Primo N. Lara, Jr. Eric Jonasch (Editors). kidney cancer (2 ed). Springer International Publishing (2015) → Русский

1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics. CA Cancer J Clin 64(1):9–29

2. Linehan WM, Ricketts CJ (2013) The metabolic basis of kidney cancer. Semin Cancer Biol 23(1):46–55

3. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

4. Thompson CB (2009) Attacking cancer at its root. Cell 138(6):1051–1054

5. Christofk HR, Vander Heiden MG, Wu N et al (2008) Pyruvate kinase M2 is a phosphotyrosine binding protein. Nature 452(7184):181–186

6. Deberardinis RJ, Lum JJ, Hatzivassiliou G et al (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

7. Christofk HR, Vander Heiden MG, Harris MH et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7185):230–233

8. Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270

9. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

10. Yang Y, Valera VA, Padilla-Nash HM et al (2010) UOK 262 cell line, fumarate hydratase deficient (FH-/ FH-) hereditary leiomyomatosis renal cell carcinoma: in vitro and in vivo model of an aberrant energy metabolic pathway in human cancer. Cancer Genet Cytogenet 196:45–55

11. Selak MA, Armour SM, MacKenzie ED et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85

12. DeBerardinis RJ, Mancuso A, Daikhin E et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350

13. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

14. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

15. Memmott RM, Dennis PA (2009) Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal 21:656–664

16. Yeung SJ, Pan J, Lee MH (2008) Roles of p53, MYC and HIF-1 in regulating glycolysis – the seventh hallmark of cancer. Cell Mol Life Sci 65(24):3981–3999

17. Osthus RC, Shim H, Kim S et al (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275(29):21797–21800

18. Ooi A, Wong JC, Petillo D et al (2011) An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20(4):511–523

19. Mitsuishi Y, Taguchi K, Kawatani Y et al (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22(1):66–79

20. Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxiainducible factors for oxygen-dependent proteolysis. Nature 399:271–275

21. Ohh M, Park CW, Ivan M et al (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol 2:423–427

22. Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

23. Isaacs JS, Jung YJ, Mole DR et al (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8(2):143–153

24. Hasumi Y, Baba M, Ajima R et al (2009) Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc Natl Acad Sci 106(44):18722–18727

25. Baba M, Hong SB, Sharma N et al (2006) Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1 and AMPK and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci 103(42):15552–15557

26. Turner A, McGivan JD (2003) Glutaminase isoform expression in cell lines derived from human colorectal adenomas and carcinomas. Biochem J 370:403–408

27. Matsuno T, Goto I (1992) Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma. Cancer Res 52:1192–1194

28. Mullen AR, Wheaton WW, Jin ES et al (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381):385–388

29. Toro JR, Nickerson ML, Wei MH et al (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73:95–106

30. Grubb RL III, Franks ME, Toro J et al (2007) Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J Urol 177:2074–2080

31. Merino MJ, Torres-Cabala C, Pinto PA, Linehan WM (2007) The morphologic spectrum of kidney tumors in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Am J Surg Pathol 31:1578–1585

32. Tong WH, Sourbier C, Kovtunovych G et al (2011) The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases metabolic propensities and lowers cellular iron levels. Cancer Cell 20:315–327

33. Adam J, Hatipoglu E, O’Flaherty L et al (2011) Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20(4):524–537

34. Ooi A, Dykema K, Ansari A et al (2013) CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma. Cancer Res 73(7):2044–2051

35. Baysal BE, Ferrell RE, Willett-Brozick JE et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851

36. Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268–270

37. Vanharanta S, Buchta M, McWhinney SR et al (2004) Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet 74:153–159

38. Ricketts C, Woodward ER, Killick P et al (2008) Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 100:1260–1262

39. Ricketts CJ, Shuch B, Vocke CD et al (2012) Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol 188(6):2063–2071

40. Walther MM, Choyke PL, Glenn G et al (1999) Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol 161:1475–1479

41. Duffey BG, Choyke PL, Glenn G et al (2004) The relationship between renal tumor size and metastases in patients with von Hippel-Lindau disease. J Urol 172:63–65

42. Latif F, Tory K, Gnarra JR et al (1993) Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 260:1317–1320

43. Hosoe S, Brauch H, Latif F et al (1990) Localization of the von Hippel–Lindau disease gene to a small region of chromosome 3. Genomics 8:634–640

44. Moore LE, Nickerson ML, Brennan P et al (2011) Von Hippel–Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 7:1–13 102

45. Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49

46. Fischer J, Palmedo G, von Knobloch R et al (1998) Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene 17:733–739

47. Bottaro DP, Rubin JS, Faletto DL et al (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251(4995):802–804

48. Choueiri TK, Vaishampayan U, Rosenberg JE et al (2013) Phase II and biomarker study of the dual MET/ VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol 31(2):181–186

49. Nickerson ML, Warren MB, Toro JR et al (2002) Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2:157–164

50. Vocke CD, Yang Y, Pavlovich CP et al (2005) High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dube-associated renal tumors. J Natl Cancer Inst 97:931–935

51. Tsun ZY, Bar-Peled L, Chantranupong L et al (2013) The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 52(4):495–505

52. Hasumi H, Baba M, Hong SB et al (2008) Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene 415:60–67

53. Hasumi H, Baba M, Hasumi Y et al (2012) Regulation of mitochondrial oxidative phosphorylation by tumor suppressor FLCN. J Natl Cancer Inst 104(22):1750–1764

54. Davis CF, Ricketts CJ, Wang M et al (2014) The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26(3):319–330

55. Bjornsson J, Short MP, Kwiatkowski DJ et al (1996) Tuberous sclerosis-associated renal cell carcinoma: clinical, pathological and genetic factors. Am J Pathol 149:1–8

56. Brugarolas J, Kaelin WG Jr (2004) Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6:7–10

57. Brugarolas JB, Vazquez F, Reddy A et al (2003) TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4:147–158

58. Komai Y, Fujiwara M, Fujii Y et al (2009) Adult Xp11 translocation renal cell carcinoma diagnosed by cytogenetics and immunohistochemistry. Clin Cancer Res 15:1170–1176

59. Malouf GG, Camparo P, Molinie V et al (2011) Transcription factor E3 and transcription factor EB renal cell carcinomas: clinical features, biological behavior and prognostic factors. J Urol 185(1):24–29

60. Wang W, Ding J, Li Y et al (2014) Magnetic resonance imaging and computed tomography characteristics of renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion. PLoS One 9(6): e99990

61. Mosquera JM, Dal Cin P, Mertz KD et al (2011) Validation of a TFE3 break-apart FISH assay for Xp11.2 translocation renal cell carcinomas. Diagn Mol Pathol 20:129–137

62. Zhong M, De Angelo P, Osborne L et al (2012) Translocation renal cell carcinomas in adults: a single-institution experience. Am J Surg Pathol 36:654–662

63. Ellis CL, Eble JN, Subhawong AP et al (2014) Clinical heterogeneity of Xp11 translocation renal cell carcinoma: impact of fusion subtype, age, and stage. Mod Pathol 27(6):875–876

64. Bertolotto C, Lesueur F, Giuliano S et al (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480(7375):94–98

65. Argani P, Hicks J, De Marzo AM et al (2010) Xp11 translocation renal cell carcinoma (RCC): extended immunohistochemical profile emphasizing novel RCC markers. Am J Surg Pathol 34(9):1295–1303

66. Iwasaki H, Naka A, Iida KT et al (2012) TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. Am J Physiol Endocrinol Metab 302(7):E896–E902

67. Pilarski R, Burt R, Kohlman W, Pho L et al (2013) Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst 105(21):1607–1616

68. Mester JL, Zhou M, Prescott N et al (2012) Papillary renal cell carcinoma is associated with PTEN hamartoma syndrome. Urology 79(5):1187.e1–1187.e7

69. Shuch B, Ricketts CJ, Vocke CD et al (2013) Germline PTEN mutation Cowden syndrome: an underappreciated form of hereditary kidney cancer. J Urol 190(6):1990–1998

70. Squarize CH, Castilho RM, Gutkind JS (2008) Chemoprevention and treatment of experimental Cowden’s disease by mTOR inhibition with rapamycin. Cancer Res 68(17):7066–7072

71. Shuch B, Linehan WM, Srinivasan R (2013) Aerobic glycolysis: a novel target in kidney cancer. Expert Rev Anticancer Ther 13(6):711–719

72. Srinivasan R, Su D, Stamatakis L et al (2014) Mechanism based targeted therapy for hereditary leiomyomatosis and renal cell cancer (HLRCC) and sporadic papillary renal cell carcinoma: interim results from a phase 2 study of bevacizumab and erlotinib. Eur J Cancer 50(S6):8