1.5. Conclusions. References

Principles of stem cell biology and cancer: future applications and therapeutics. Edited by T. Regad, T. J. Sayers and R. C. Rees. John Wiley & Sons (2015)


One of the most promising applications to date for stem cell-based tissue engineering is the treatment of the dry form of age-related macular degeneration (AMD) with hPSC-derived RPE. This is the first approach using hPSCs to move to clinical trials, partly because of the ease with which differentiation into RPE cells was first achieved. Human PSCs will spontaneously develop into RPE cells at low efficiencies and can be easily identified via pigmentation. Recent advances in differentiation protocols have increased efficiencies to ~60%, allowing purification of enough cells for transplantation into patients, through either the injection of a single cell suspension or insertion of a ‘patch’ of cells grown in a monolayer on a scaffold (Buchholz et al., 2013)* . These first clinical trials may successfully cure AMD and push hPSCs into a clinical era. However, they might also uncover unwanted side effects, such as those described with the first attempts to cure severe combined immunodeficiency (SCID-X1) by using gene therapy to genetically modify cells (Hacein-Bey-Abina et al., 2003). An early clinical trial conducted by the Geron Corporation attempted to use hESC derivatives to treat spinal cord injury, but it ended prematurely, partly because of the unanticipated cost of the project. This is an example of the unforeseen hurdles that can still slow advancement to treatments.

The use of hPSCs for tissue engineering could circumvent issues of tissue supply, regress symptoms of neurodegenerative diseases rather than just alleviate them, and provide replacement cells that were previously unobtainable. The approaches described in this chapter represent only those that are closest to clinical use. In the future, it may be possible to use gene therapy to cure genetic defects in the iPSCs of patients before re-implanting them as an autologous cell-replacement therapy, and even to use additive manufacturing to create whole organs from hPSC derivatives (Orlando et al., 2013). Currently, the costs of these therapies are prohibitive, but, although the need for extensive preclinical analysis of cells will always be present, optimization of these procedures alongside differentiation, transplantation and reprogramming will eventually bring costs down.

As our understanding of human embryology expands and we learn to better recapitulate it in vitro, we can expect to see the number of applications for hPSCs in tissue engineering rise exponentially.

* Since the time of writing trials have shown improvements in the eyesight of patients taking part in trials for this treatment of AMD (Schwartz et al., 2014).

References:

Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P. W., Beighton, G., et al., 2007. Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat. Biotechnol. 25(7), 803 – 816.

Aguayo-Mazzucato, C., Bonner-Weir, S., 2010. Stem cell therapy for type 1 diabetes mellitus. Nat. Rev. Endocrinol. 6(3), 139 – 148.

Ali, F., Stott, S.R.W., Barker, R.A., 2013. Stem cells and the treatment of Parkinson’s disease. Exp. Neurol. 260, 3 – 11.

Amps, K., Andrews, P.W., Anyfantis, G., Armstrong, L., Avery, S., Baharvand, H., et al., 2011. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat. Biotechnol. 29(12), 1132 – 1144.

Avery, S., Hirst, A.J., Baker, D., Lim, C.Y., Alagaratnam, S., Skotheim, R.I., et al., 2013. BCL-XL mediates the strong selective advantage of a 20q11.21 amplification commonly found in human embryonic stem cell cultures. Stem Cell Rep. 1(5), 379 – 386.

Baker, D.E.C., Harrison, N.J., Maltby, E., Smith, K., Moore, H.D., Shaw, P.J., et al., 2007. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25(2), 207 – 215.

Ben-David, U., Benvenisty, N., 2012. High prevalence of evolutionarily conserved and species-specific genomic aberrations in mouse pluripotent stem cells. Stem Cells (Dayton, Ohio) 30(4), 612 – 622.

Beroukhim, R., Mermel, C.H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., et al., 2010. The landscape of somatic copy-number alteration across human cancers. Nature 463(7283), 899 – 905.

Blasco, M.A., 2007. Telomere length, stem cells and aging. Nat. Chem. Biol. 3(10), 640 – 649.

Bock, C., Kiskinis, E., Verstappen, G., Gu, H., Boulting, G., Smith, Z.D., et al., 2011. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144(3), 439 – 452.

Brons, I.G.M., Smithers, L.E., Trotter, M.W.B., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S.M., et al., 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150), 191 – 195.

Buchholz, D.E., Pennington, B.O., Croze, R.H., Hinman, C.R., Coffey, P.J., Clegg, D.O., 2013. Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Trans. Med. 2(5), 384 – 393.

Caspersson, T., Zech, L., Johansson, C., 1970. Analysis of human metaphase chromosome set by aid of DNA-binding fluorescent agents. Exp. Cell Res. 62(2 – 3), 490 – 492.

Cord, B.J., Li, J., Works, M., McConnell, S.K., Palmer, T., Hynes, M.A., 2010. Characterization of axon guidance cue sensitivity of human embryonic stem cell-derived dopaminergic neurons. Mol. Cell. Neurosci. 45(4), 324 – 334.

Draper, J.S., Smith, K., Gokhale, P., Moore, H.D., Maltby, E., Johnson, J., et al., 2003. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol., 22(1), 53 – 54.

Evans, M.J., Kaufman, M.H., 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819), 154 – 156.

Gore, A., Li, Z., Fung, H.-L., Young, J.E., Agarwal, S., Antosiewicz-Bourget, J., et al., 2011. Somatic coding mutations in human induced pluripotent stem cells. Nature 470(7336), 63 – 67.

Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., Gobaa, S., Ranga, A., Semb, H., et al., 2013. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140(21), 4452 – 4462.

Gropp, M., Shilo, V., Vainer, G., Gov, M., Gil, Y., Khaner, H., et al., 2012. Standardization of the teratoma assay for analysis of pluripotency of human ES cells and biosafety of their differentiated progeny. PLoS One 7(9), e45532.

Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N., McIntyre, E., et al., 2003. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348(3), 255 – 256.

Hanahan, D., Weinberg, R.A., 2011. Hallmarks of cancer: the next generation. Cell 144(5), 646 – 674.

Harrison, N.J., Baker, D., Andrews, P.W., 2007. Culture adaptation of embryonic stem cells echoes germ cell malignancy. Int. J. Androl. 30(4), 275 – 281, disc. 281.

Hasegawa, K., Pomeroy, J.E., Pera, M.F., 2010. Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell, 6(6), 521 – 531.

Henderson, J.K., Draper, J.S., Baillie, H.S., Fishel, S., Thomson, J.A., Moore, H., et al., 2002. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells (Dayton, Ohio) 20(4), 329 – 337.

Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., et al., 2000. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6(2), 88 – 95.

Juliusson, G., Oscier, D.G., Fitchett, M., Ross, F.M., Stockdill, G., Mackie, M.J., et al., 1990. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N. Engl. J. Med. 323(11), 720 – 724.

Lengner, C.J., Gimelbrant, A.A., Erwin, J.A., Cheng, A.W., Guenther, M.G., Welstead, G.G., et al., 2010. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141(5), 872 – 883.

Lund, R.J., Emani, M.R., Barbaric, I., Kivinen, V., Jones, M., Baker, D., et al., 2013.

Karyotypically abnormal human ESCs are sensitive to HDAC inhibitors and show altered regulation of genes linked to cancers and neurological diseases. Stem Cell Res. 11(3), 1022 – 1036.

Martin, G.R., 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Nat. Acad. Sci. USA 78(12), 7634 – 7638.

Muller, F.-J., Schuldt, B.M., Williams, R., Mason, D., Altun, G., Papapetrou, E.P., et al., 2011. A bioinformatic assay for pluripotency in human cells. Nat. Meth. 8, 315 – 317.

Narva, E., Autio, R., Rahkonen, N., Kong, L., Harrison, N., Kitsberg, D., et al., 2010. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat. Biotechnol. 28(4), 371 – 377.

Nazor, K.L., Altun, G., Lynch, C., Tran, H., Harness, J.V., Slavin, I., et al., 2012. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 10(5), 620 – 634.

Ng, E.S., Davis, R.P., Azzola, L., Stanley, E.G., Elefanty, A.G., 2005. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106(5), 1601 – 1603.

Orlando, G., Soker, S., Stratta, R.J., Atala, A., 2013. Will regenerative medicine replace transplantation? Cold Spring Harb. Perspect. Med. 3(8).

Pavlakis, M., Khwaja, K., 2007. Pancreas and islet cell transplantation in diabetes. Curr. Opin. Endocrinol. Diabetes Obes 14(2), 146 – 150.

Plantaz, D., Mohapatra, G., Matthay, K.K., Pellarin, M., Seeger, R.C., Feuerstein, B.G., 1997. Gain of chromosome 17 is the most frequent abnormality detected in neuroblastoma by comparative genomic hybridization. Am. J. Pathol. 150(1), 81 – 89.

Schwartz, S.D., Regillo, C.D., Lam, B.L., Eliott, D., Rosenfeld, P.J., Gregori, N.Z., et al., 2014. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. The Lancet. doi:10.1016/S0140-6736(14)61376-3

Shamblott, M.J., Axelman, J., Wang, S., Bugg, E.M., Littlefield, J.W., Donovan, P.J., et al., 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Nat. Acad. Sci. USA 95(23), 13 726 – 13 731.

Silva, J., Smith, A., 2008. Capturing pluripotency. Cell 132(4), 532 – 536.

Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J., Stahl, M., et al., 1988. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336(6200), 688 – 690.

Summersgill, B., Osin, P., Lu, Y.J., Huddart, R., Shipley, J., 2001. Chromosomal imbalances associated with carcinoma in situ and associated testicular germ cell tumours of adolescents and adults. Brit. J. Cancer 85(2), 213 – 220.

Sumner, A.T., Evans, H.J., Buckland, R.A., 1971. New technique for distinguishing between human chromosomes. Nature: New Biol. 232(27), 31 – 32.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al., 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Nat. Protoc. 131(12), 3081 – 3089.

Tchieu, J., Kuoy, E., Chin, M.H., Trinh, H., Patterson, M., Sherman, S.P., et al., 2010. Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7(3), 329 – 342.

Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., et al., 1998. Embryonic stem cell lines derived from human blastocysts. Science 282(5391), 1145 – 1147.

van den Berg, I.M., Laven, J.S.E., Stevens, M., Jonkers, I., Galjaard, R.-J., Gribnau, J., et al., 2009. X chromosome inactivation is initiated in human preimplantation embryos. Am. J. Hum. Genet. 84(6), 771 – 779.

Werbowetski-Ogilvie, T.E., Bosse, M., Stewart, M., Schnerch, A., Ramos-Mejнa, V., Rouleau, A., et al., 2009. Characterization of human embryonic stem cells with features of neoplastic progression. Nature Biotechnol. 27(1), 91 – 97.

Widner, H., Tetrud, J., Rehncrona, S., Snow, B., Brundin, P., Gustavii, B., et al., 1992. Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med. 327(22), 1556 – 1563.

Yamanaka, S., 2012. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10(6), 678 – 684.

0

Добавить комментарий

Войти с помощью: 

Ваш e-mail не будет опубликован. Обязательные поля помечены *