15.4. Conclusions. References

Principles of stem cell biology and cancer: future applications and therapeutics. Edited by T. Regad, T. J. Sayers and R. C. Rees. John Wiley & Sons (2015)

Part II. Cancer stem cells

In conclusion, we believe that additional effort should be devoted to understanding the functional and biological properties of putative CSCs in cancer. The main issue is to identify biological markers linked to CSC-specific functions and confirm their expression in human bioptic samples. This is also a challenge for the development of diagnostic/prognostic tools by which to follow cancer development. The use of quantitative models can be of great help in orientating research and avoiding pitfalls in the interpretation of the experimental data. An interdisciplinary approach, combining applied mathematics, physics and biology, is needed when traditional biological thinking is unable to solve the problem completely. Figure 15.1 summarizes all the concepts discussed in this chapter.


Agur, Z., Kirnasovsky, O.U., Vasserman, G., Tencer-Hershkowicz, L., Kogan, Y., Harrison, H., et al., 2011. Dickkopf1 regulates fate decision and drives breast cancer stem cells to differentiation: an experimentally supported mathematical model. PLoS One 6, e24225.

Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F. 2003. Prospective identification of tumorigenic breast cancer cells. Proc. Nat. Acad. Sci. USA 100, 3983 – 3988.

Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., et al., 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756 – 760.

Benjamin, T., Spike, D.D., Engle, J.C., Lin, S.K., Cheung, J.L., Geoffrey, M., Wahl A. 2012. Mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell 10, 183 – 197.

Bleau, A.M., Hambardzumyan, D., Ozawa, T., Fomchenko, E.I., Huse, J.T., Brennan, C.W., Holland, E.C. 2009. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4, 226 – 235.

Boiko, A.D., Razorenova, O.V., van de Rijn, M., Swetter, S.M., Johnson, D.L., Ly, D.P., et al., 2010. Human melanoma initiating cells express neural crest nerve growth factor receptor CD271. Nature 466, 133 – 137.

Brummendorf, T.H., Dragowska, W., Zijlmans, J., Thornbury, G., Lansdorp, P.M. 1998. Asymmetric divisions sustain long/ term hematopoiesis from single sorted human liver cells. J. Exp. Med. 188, 1117 – 1124.

Charafe-Jauffret, E., Ginestier, C., Iovino, F., Wicinski, J., Cervera, N., Finetti, P., et al., 2009. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 69, 1302 – 1313.

Clayton, E., Doupй, D.P., Klein, A.M., Winton, D.J., Simons, B.D., Jones, P.H. 2007. A single type of progenitor cell maintains normal epidermis. Nature 446(7132), 185 – 189.

Cogngeim, J. 1867. Ueber entrzundung und eiterung. Path. Anat. Physiol. Med. 40, 1 – 79.

Collado, M., Serrano, M. 2010. Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer 10, 51 – 57.

D’Amico, L., Patanи, S., Grange, C., Bussolati, B., Isella, C., Fontani, L., et al., 2013. Primary breast cancer stem-like cells metastasise to bone, switch phenotype and acquire a bone tropism signature. Br. J. Cancer, 108, 2525 – 2536.

Dalerba, P., Dylla, S.J., Park, I.K., Liu, R., Wang, X., Cho, R.W., et al., 2007. Phenotypic characterization of human colorectal cancer stem cells. Proc. Nat. Acad. Sci. USA 104(24), 10 158 – 10 163.

Dallas N.A., Xia L., Fan F., Gray, M.J., Gaur, P., van Buren, G. 2nd, et al., 2009. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res.  69(5), 1951 – 1957.

Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., et al., 2006. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638 – 642.

Dou, J., Pan, M., Wen, P., Li, Y., Tang, Q., Chu, L., et al., 2007. Isolation and identification of cancer stem cell-like cells from murine melanoma cell lines. Cell Mol. Immunol. 4, 467 – 472.

Du, L., Wang, H., He, L., Zhang, J., Ni, B. Wang, X., et al., 2008. CD44 is of functional importance for colorectal cancer stem cells. Clin. Cancer Res. 14(21), 6751 – 6760.

Fang, D., Nguyen, T.K., Leishear, K., Finko, R., Kulp, A.N., Hotz, S., et al., 2005. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65, 9328 – 9337.

Fillmore, C.M., Kuperwasser, C. 2008. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 10, R25. Fonseca, A.V., Bauer, N., Corbeil, D. 2008. The stemcellmarker CD133 meets the endosomal compartment – new insights into the cell division of hematopoietic stem cells. Blood Cell Mol. Dis. 41, 194 – 195.

Gao, F.B., Raff, M. 1997. Cell size control and cell intrinsic maturation program in proliferating oligodendrocyte precursor cells. J. Cell Biol. 138, 1367 – 1377.

Gupta, P.B., Fillmore, C.M., Jing, G., Shapira, S.D., Tao, K., Kuperwasser C., Lander E.S. 2011. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633 – 644.

Haas, N.K., Herlyn, M. 2005. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J. Invest. Dermatol. Symp. Proc. 10, 153 – 163.

Hadnagy, A., Gaboury, L., Beaulieu, R., Balicki, D. 2006. SP analysis may be used to identify cancer stem cell population. Exp. Cell Res. 312, 3701 – 3710.

Haraguchi, N., Ohkuma, M., Sakashita, H., Matsuzaki, S., Tanaka, F., Mimori, K., et al., 2008. CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann. Surg. Oncol. 15(10), 2927 – 2933.

Harrison, H., Farnie, G., Brennan, K.R., Clarke, R.B. 2010. Breast cancer stem cells: something out of notching? Cancer Res. 15, 8973 – 8976.

Hayflick, L., Moorhead, P.S. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585 – 621.

Huang, E.H., Hynes, M.J., Zhang, T., Ginestier, C., Dontu, G., Appelman, H., et al., 2009. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69(8), 3382 – 3389.

Klein, W.M., Wu, B.P., Zhao, S., Wu, H., Klein-Szanto, A.J., Tahan, S.R. 2007. Increased expression of stem cell markers in malignant melanoma. Mod. Pathol. 20, 102 – 107.

Kumar, S.M., Liu, S., Lu, H., Zhang, H., Zhang, P.J., Gimotty, P.A. 2012. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene 31(47), 4898 – 4911.

La Porta, C. 2009. Cancer stem cells: lessons from melanoma. Stem Cell Rev. 5(1), 61 – 65.

La Porta, C.A.M. 2010. Cancer stem cells: light and shadows. In: Singh, S.R. (ed.) Stem Cell, Regenerative Medicine and Cancer. Hauppauge, NY: Nova Science, pp. 513 – 525.

La Porta, C.A.M., Zapperi, S., Sethna, J. 2012. Senescence cells in growing tumors: population dynamics in cancer stem cells. PloS Comp. Biol. 8, e1002316.

Legler, J.M., Ries, L.A., Smith, M.A., Warren, J.L., Heineman, E.F., Kaplan, R.S., Linet, M.S. 1999. Cancer surveillance series (corrected): brain and other central nervous system cancers: recent trends in incidence and mortality. J. Nat. Cancer Inst. 91(16), 1382 – 1390.

Lopez-Garcia, C., Klein, A.M., Simons, B.D., Winton, D.J. 2010. Intestinal stem cell replacement follows a pattern of neutral drift. Science 330, 822 – 825.

Marcato, P., Dean, C.E., Liu, R., Coyle, K.M., Bydoun, M., Wallace, M., et al., 2014. Aldehyde dehydrogenase 1A3 influences breast cancer progression via differential retinoic acid signaling. Mol. Oncol. 2014, S1574 – S7891.

Mafirgaritescu, C., Pirici, D., Cherciu, I., Bafirbafilan, A., Cвrtвnafi, T., Safiftoiu, A. 2014. CD133/Cd166/Ki-67 triple immunofluorescence assessment for putative cancer stem cells in colon. J. Gastrointestin. Liver Dis. 23, 161 – 170.

Monzani, E., Facchetti, F., Galmozzi, E., Corsini, E., Benetti, A., Cavazzin, C., et al., 2007. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumorigenic potential. Eur. J. Cancer 43, 935 – 946.

Pardal, R., Clarke, M.F., Morrison, S.J. 2003. Applying the principle of stem cell biology to cancer. Nat. Rev. Cancer 3, 895 – 902.

Puglisi, M.A., Sgambato, A., Saulnier, N., Rafanelli, F., Barba, M., Boninsegna, A. et al., 2009. Isolation and characterization of CD 133+ cell population within human primary and metastatic colon cancer. Eur. Rev. Med. Pharm. Sci. 13(1), 55 – 62.

Quintana, E., Shackleton, M., Sabel, M.S., Fullen, D.R., Johnson, T.M., Morrison, S.J. 2008. Efficient tumour formation by single human melanoma cells. Nature 456, 593 – 598.

Quintana, E., Shackleton, M., Foster, H.R., Fullen, D.R., Sabel, M.S., Johnson, T.M., Morrison, S.J. 2010. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18, 510 – 523.

Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L. 2001. Stem cells, cancer and cancer stem cells. Nature 414, 105 – 111.

Schatton, T., Murphy, G.F., Frank, N.Y., Yamaura, K., Waaga-Gasser, A.M., Gasser, M., et al., 2008. Identification of cells initiating human melanomas. Nature 451, 345 – 349.

Sheridan, C., Kishimoto, H., Fuchs, R.K., Mehrotra, S., Bhat-Nakashatri, P., Turner, C.H., et al., 2006. CD44+/Cd24breast cancer cells exhibit enhanced invasive properties: an early sytep necessary to metastasis. Breast Cancer Res. 8(5), R59.

Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., et al., 2004. Identification of human brain tumour initiating cells. Nature 432, 396 – 401.

Taghizadeh, R., Noh, M., Huh, Y.H., Ciusani, E., Sigalotti, L., Maio, M., et al., 2010. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells. PLoS One 5(12), e15183.

Takano, H., Ema, H., Sudo, K., Nakauchi, H. 2004. Asymmetric division and lineage commitment at the level of hematopoietic stem cells: interference from differentiation in daughter cell and granddaughter cell pairs. J. Exp. Med. 199, 295 – 302.

Vermeulen, L., de Sousa, F., Melo, E., van der Heijden, M., et al., 2010. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12(5), 468 – 476.

Virchow, R. 1855. Editorial. Virchows Arch. Pathol. Anat. Physiol. Med 1855, 23. Wallenfang, M.R., Matunis, E. 2003. Developmental biology orienting stem cells. Science 301, 1490 – 1491.

Wasco, M.J., Pu, R.T., Yu, L., Su, L., Ma, L. 2008. Expression of c-H2AX in melanocytic lesions. Hum. Pathol. 39, 1614 – 1620.

Zapperi, S., La Porta, C.A.M. 2012. Do cancer cells undergo phenotypic switching? The case for imperfect cancer stem cell markers. Sci. Rep. 2, 441.

Zhong, Y., Guan, K., Zhou, C., Maa, W. Wang, D., Zhang, Y., Zhang, S. 2010. Cancer stem cells sustaining the growth of mouse melanoma are not rare. Cancer Lett. 292, 17 – 23.

Zon, L. 2008. Intrinsic and extrinsic control of haematopoietic stem cell self renewal. Nature 453, 306 – 313.


Добавить комментарий

Войти с помощью: 

Ваш e-mail не будет опубликован. Обязательные поля помечены *