3.6. Conclusions. References

Principles of stem cell biology and cancer: future applications and therapeutics. Edited by T. Regad, T. J. Sayers and R. C. Rees. John Wiley & Sons (2015)

Part I. Stem Cells


The stem cell, whether normal or cancerous, is intrinsically associated with its niche, the strong interaction between the two resulting in the niche’s control over stem cell fate. Therefore, understanding the complex interactions between CSCs and their niche microenvironments will contribute to the development of effective new treatment strategies that eliminate both the bulk of tumour cells and CSCs. The concept that the niche microenvironment might be a therapeutic target is a consistent alternative to the direct targeting of the tumour lesion.

Therapies that target CSCs may have unique properties compared to those that target the bulk of a tumour. Assuming that CSCs represent only a small proportion of an entire tumour, eradicating them might have little impact on the size of the tumour. Over time, however, the tumour can be expected to exhaust itself and dissipate, because it will have lost the capacity for long-term self-renewal (Yang and Wechsler-Reya, 2007). Therefore, successful therapeutic strategies will target the functions that all CSC niches have in common: mediating self-renewal and maintaining an undifferentiated state and CSC activity.

From a clinical perspective, it remains to be established whether such therapies are feasible. Antibodies against the fibronectin receptor VLA-4 (a4β1 integrin) and disruption of VEGFR1+ cellular cluster formation could block the metastasis of well-established tumours (Kaplan et al., 2005). Interestingly, high VLA-4 expression on leukaemia cells reduces their chemosensitivity through interaction with fibronectin in the bone marrow, resulting in a poor induction of remission and minimal residual disease (MRD) in the bone marrow, ultimately leading to recurrence and short-term survival (Matsunaga et al., 2003). Thus, the combination of CSC targeting with the use of conventional agents against tumour mass should be considered. Indeed, combinations of antiangiogenic drugs and conventional chemotherapies have proven to be more effective than either mode of therapy alone (Tozer et al., 2005), particularly because they can prevent metastasis by disrupting the interaction between CSCs and their niche.

The theory that tumours depend for their long-term growth and propagation on the interaction between a population of CSCs and their niche has profound implications for our understanding and treatment of cancer. The latest drugs targeting CSCs or their microenvironments are expected to minimize complications and, at the same time, improve patient quality of life. Thus, from both scientific and clinical perspectives, the biology of stem cells and their respective niches is one of the most promising fields of research for understanding and targeting cancer.

References

Abedin, M., King, N. 2010. Diverse evolutionary paths to cell adhesion. Trend. Cell Biol. 20, 734 – 742.

Adams, G.B., Scadden, D.T. 2006. The hematopoietic stem cell in its place. Nat. Immunol. 7, 333 – 337.

Alvarez-Buylla, A., Lim, D.A. 2004. For the long run: maintaining germinal niches in the adult brain. Neuron. 41, 683 – 686.

Alvarez-Silva, M., Borojevic, R. 1996. GM-CSF and IL-3 activities in schistosomal liver granulomas are controlled by stroma-associated heparan sulfate proteoglycans. J. Leuk. Biol. 59, 435 – 441.

Arnaout, M.A., Goodman, S.L., Xiong, J.-P. 2007. Structure and mechanics of integrin-based cell adhesion. Curr. Opin. Cell Biol. 19, 495 – 507.

Banyai, L., Sonderegger, P., Patthy, L. 2010. Agrin binds BMP2, BMP4 and TGFbeta1. PLoS One 5, 0010758.

Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A.B., Shi, Q., et al., 2006. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843 – 7848.

Barczyk, M., Carracedo, S., Gullberg, D. 2010. Integrins. Cell Tiss. Res. 339, 269 – 280. Bernfield, M., Kokenyesi, R., Kato, M., Hinkes, M.T., Spring, J., Gallo, R.L., Lose, E.J. 1992. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Ann. Rev. Cell Biol. 8, 365 – 393.

Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., Zako, M. 1999. Functions of cell surface heparan sulfate proteoglycans. Ann. Rev. Biochem. 68, 729 – 777.

Bianco, P. 2011. Bone and the hematopoietic niche: a tale of two stem cells. Blood 117, 5281 – 5288. Bonnet, D., Dick, J.E. 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730 – 737.

Brizzi, M.F., Tarone, G., Defilippi, P. 2012. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 24, 645 – 651.

Calabrese, C., Poppleton, H., Kocak, M., Hogg, T.L., Fuller, C., Hamner, B., et al., 2007. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69 – 82. Calderwood, D.A. 2004. Integrin activation. J. Cell Sci. 117, 657 – 666.

Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., et al., 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841 – 846.

Campbell, I.D., Humphries, M.J. 2011. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol., 3.

Can, A. 2008. Haematopoietic stem cells niches: interrelations between structure and function. Transfus. Apheresis Sci. 38, 261 – 268.

Cary, L.A., Guan, J.L. 1999. Focal adhesion kinase in integrin-mediated signaling. Frontiers Biosci. 4, D102 – D113.

Chen, E., Hermanson, S., Ekker, S.C. 2004. Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood 103, 1710 – 1719.

Choi, Y., Chung, H., Jung, H., Couchman, J.R., Oh, E.-S. 2011. Syndecans as cell surface receptors: unique structure equates with functional diversity. Matrix Biol. 30, 93 – 99.

Christov, C., Chretien, F., Abou-Khalil, R., Bassez, G., Vallet, G., Authier, F.J., et al., 2007. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell, 18, 1397 – 1409.

Couchman, J.R. 2003. Syndecans: proteoglycan regulators of cell-surface microdomains? Nat. Rev. Mol. Cell Biol. 4, 926 – 937.

Couchman, J.R. 2010. Transmembrane signaling proteoglycans. Ann. Rev. Cell Dev. Biol. 26, 89 – 114.

Crank, J. 1979. The Mathematics of Diffusion. Oxford: Clarendon Press.

Dalerba, P., Cho, R.W., Clarke, M.F. 2007. Cancer stem cells: models and concepts. Ann. Rev. Med. 58, 267 – 284.

Delehedde, M., Lyon, M., Sergeant, N., Rahmoune, H., Fernig, D.G. 2001. Proteoglycans: pericellular and cell surface multireceptors that integrate external stimuli in the mammary gland. J. Mamm. Gland Biol. Neoplasia. 6, 253 – 273.

Dexter, T.M., Allen, T.D., Lajtha, L.G. 1977. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol. 91, 335 – 344.

Dhawan, J., Rando, T.A. 2005. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol. 15, 666 – 673.

Drzeniek, Z., Siebertz, B., Stocker, G., Just, U., Ostertag, W., Greiling, H., Haubeck, H.D. 1997. Proteoglycan synthesis in haematopoietic cells: isolation and characterization of heparan sulphate proteoglycans expressed by the bone-marrow stromal cell line MS-5. Biochem. J. 327(Pt 2), 473 – 480.

Ema, H., Suda, T. 2012. Two anatomically distinct niches regulate stem cell activity. Blood 120, 2174 – 2181.

Fazilaty, H., Gardaneh, M., Bahrami, T., Salmaninejad, A., Behnam, B. 2013. Crosstalk between breast cancer stem cells and metastatic niche: emerging molecular metastasis pathway? Tumor Biol. 34, 2019 – 2030.

Gage, F.H. 2000. Mammalian neural stem cells. Science 287, 1433 – 1438. Gallagher, J.T. 2001. Heparan sulfate: growth control with a restricted sequence menu. J. Clin. Invest. 108, 357 – 361.

Giancotti, F.G., Ruoslahti, E. 1999. Integrin signaling. Science 285, 1028 – 1032. Gonzalez-Perez, O., Alvarez-Buylla, A. 2011. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res. Rev. 67, 147 – 156.

Gonzalez-Reyes, A. 2003. Stem cells, niches and cadherins: a view from Drosophila. J. Cell Sci. 116, 949 – 954.

Grassinger, J., Haylock, D.N., Storan, M.J., Haines, G.O., Williams, B., Whitty, G.A., et al., 2009. Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with a9β1 and a4β1 integrins. Blood 114, 49 – 59.

Hall, P.E., Lathia, J.D., Miller, N.G.A., Caldwell, M.A., Ffrench-Constant, C. 2006.

Integrins are markers of human neural stem cells. Stem Cells 24, 2078 – 2084. Harmer, N.J. 2006. Insights into the role of heparan sulphate in fibroblast growth factor signalling. Biochem. Soc. Trans. 34, 442 – 445.

Hay, E.D. 1991. Cell Biology of Extracellular Matrix. New York: Plenum Press.

Hay, E.D. 1995. An overview of epithelio-mesenchymal transformation. Cells Tissues Organs 154, 8 – 20.

Hope, K.J., Jin, L., Dick, J.E. 2004. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol. 5, 738 – 743.

Hubmacher, D., Apte, S.S. 2013. The biology of the extracellular matrix: novel insights. Curr. Opin. Rheumatol. 25, 65 – 70.

Humphries, J.D., Byron, A., Humphries, M.J. 2006. Integrin ligands at a glance. J. Cell Sci. 119, 3901 – 3903.

Hynes, R.O. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110,673 – 687.

Ishijima, M., Suzuki, N., Hozumi, K., Matsunobu, T., Kosaki, K., Kaneko, H., et al., 2012. Perlecan modulates VEGF signaling and is essential for vascularization in endochondral bone formation. Matrix Biol. 31, 234 – 245.

Jin, L., Hope, K.J., Zhai, Q., Smadja-Joffe, F., Dick, J.E. 2006. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat. Med. 12, 1167 – 1174.

Kaplan, R.N., Riba, R.D., Zacharoulis, S., Bramley, A.H., Vincent, L., Costa, C., et al., 2005. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820 – 827.

Keating, A., Gordon, M.Y. 1988. Hierarchical organization of hematopoietic microenvironments: role of proteoglycans. Leukemia 2, 766 – 9.

Kerever, A., Schnack, J., Vellinga, D., Ichikawa, N., Moon, C., Arikawa-Hirasawa, E., et al., 2007. Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25, 2146 – 2157.

Khurana, S., Margamuljana, L., Joseph, C., Schouteden, S., Buckley, S.M., Verfaillie, C.M. 2013. Glypican-3-mediated inhibition of CD26 by TFPI: a novel mechanism in hematopoietic stem cell homing and maintenance. Blood 121, 2587 – 2595.

Kuang, S., Gillespie, M.A., Rudnicki, M.A. 2008. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2, 22 – 31.

Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S., Zhang, D., et al., 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637 – 643.

LaBarge, M.A. 2010. The difficulty of targeting cancer stem cell niches. Clin. Cancer Res. 16, 3121 – 3129.

Lafrenie, R.M., Yamada, K.M. 1998. Integrins and matrix molecules in salivary gland cell adhesion, signaling, and gene expression. Ann. NY Acad. Sci. 842, 42 – 48.

Lai, K., Kaspar, B.K., Gage, F.H., Schaffer, D.V. 2003. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci. 6, 21 – 27.

Lander, A.D. 1998. Proteoglycans: master regulators of molecular encounter? Matrix Biol. 17, 465 – 472.

Li, L., Neaves, W.B. 2006. Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 66, 4553 – 4557.

Li, L., Xie, T. 2005. Stem cell niche: structure and function. Ann. Rev. Cell Dev. Biol. 21, 605 – 631.

Lie, D.C., Song, H., Colamarino, S.A., Ming, G.L., Gage, F.H. 2004. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Ann. Rev. Pharmacol. Toxicol. 44, 399 – 421.

Lin, R.Y. 2011. Thyroid cancer stem cells. Nat. Rev. Endocrinol. 7, 609 – 616.

Lin, F., Ren, X.D., Pan, Z., Macri, L., Zong, W.X., Tonnesen, M.G., et al., 2011. Fibronectin growth factor-binding domains are required for fibroblast survival. J. Invest. Dermatol., 131, 84 – 98.

Lobo, N.A., Shimono, Y., Qian, D., Clarke, M.F. 2007. The biology of cancer stem cells. Ann. Rev. Cell Dev. Biol. 23, 675 – 699.

Losick, V.P., Morris, L.X., Fox, D.T., Spradling, A. 2011. Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev. Cell 21, 159 – 171.

Lutz, C., Hoang, V.T., Buss, E., Ho, A.D. 2013. Identifying leukemia stem cells – is it feasible and does it matter? Cancer Lett. 338, 10 – 14.

Maillard, I., Adler, S.H., Pear, W.S. 2003. Notch and the immune system. Immunity 19, 781 – 791.

Malhotra, S., Kincade, P.W. 2009. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell 4, 27 – 36.

Marquez-Curtis, L.A., Turner, A.R., Sridharan, S., Ratajczak, M.Z., JanowskaWieczorek, A. 2011. The ins and outs of hematopoietic stem cells: studies to improve transplantation outcomes. Stem Cell Rev 7, 590 – 607.

Martini, M.M., Jeremias Talita Da, S., Kohler, M.C., Marostica, L.L., Trentin, A.G., Alvarez-Silva, M. 2013. Human placenta-derived mesenchymal stem cells acquire neural phenotype under the appropriate niche conditions. DNA Cell Biol. 32, 58 – 65.

Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., et al., 2003. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat. Med. 9, 1158 – 1165.

Mauro, A. 1961. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493 – 495.

Meads, M.B., Hazlehurst, L.A., Dalton, W.S. 2008. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin.Cancer Res. 14, 2519 – 2526.

Mecham, R.P. 2011. The Extracellular Matrix: An Overview. Berlin: Springer. Moore, K.A., Lemischka, I.R. 2006. Stem cells and their niches. Science 311, 1880 – 1885.

Morrison, S.J., Scadden, D.T. 2014. The bone marrow niche for haematopoietic stem cells. Nature 505, 327 – 334.

Mьller, P., Schier, A.F. 2011. Extracellular movement of signaling molecules. Dev.Cell 21, 145 – 158.

Naveiras, O., Nardi, V., Wenzel, P.L., Hauschka, P.V., Fahey, F., Daley, G.Q. 2009. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259 – 263.

Nilsson, S.K., Haylock, D.N., Johnston, H.M., Occhiodoro, T., Brown, T.J., Simmons, P.J. 2003. Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood 101, 856 – 862.

O’Brien, L.E., Bilder, D. 2013. Beyond the niche: tissue-level coordination of stem cell dynamics. Ann. Rev. Cell Dev. Biol. 29, 107 – 136.

Omenetti, A., Diehl, A.M. 2008. The adventures of sonic hedgehog in development and repair. II. Sonic hedgehog and liver development, inflammation, and cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 294, 24.

Ozaki, K., Leonard, W.J. 2002. Cytokine and cytokine receptor pleiotropy and redundancy. J. Biol. Chem. 277, 29 355 – 29 358.

Pang, R., Law, W.L., Chu, A.C., Poon, J.T., Lam, C.S., Chow, A.K., et al., 2010. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6(6), 603 – 615.

Potocnik, A.J., Brakebusch, C., Fassler, R. 2000. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12, 653 – 663.

Prowse, A.B.J., Chong, F., Gray, P.P., Munro, T.P. 2011. Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Res. 6, 1 – 12.

Rahman, S., Patel, Y., Murray, J., Patel, K.V., Sumathipala, R., Sobel, M., Wijelath, E.S. 2005. Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol. 6, 8.

Reya, T., Clevers, H. 2005. Wnt signalling in stem cells and cancer. Nature 434, 843 – 850.

Ricci-Vitiani, L., Pallini, R., Biffoni, M., Todaro, M., Invernici, G., Cenci, T., et al., 2010. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824 – 828.

Rombouts, E.J.C., Pavic, B., Lцwenberg, B., Ploemacher, R.E. 2004. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 104, 550 – 557.

Sagar, B.M., Rentala, S., Gopal, P.N., Sharma, S., Mukhopadhyay, A. 2006. Fibronectin and laminin enhance engraftibility of cultured hematopoietic stem cells. Biochem. Biophys. Res. Commun. 350, 1000 – 1005.

Sanderson, R.D., Bernfield, M. 1988. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia. Proc. Nat. Acad. Sci. USA 85, 9562 – 9566.

Schofield, R. 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1 – 2), 7 – 25.

Schreiber, T.D., Steinl, C., Essl, M., Abele, H., Geiger, K., Mьller, C.A., et al., 2009. The integrin a9β1 on hematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation. Haematologica 94, 1493 – 1501.

Seib, F.P., Lanfer, B., Bornhдuser, M., Werner, C. 2010. Biological activity of extracellular matrix-associated BMP-2. J. Tissue Eng. Regen. Med. 4, 324 – 327.

Sharma, M., Afrin, F., Satija, N., Tripathi, R.P., Gangenahalli, G.U. 2011. Stromalderived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cell. Dev. 20, 933 – 946.

Shen, Q., Wang, Y., Kokovay, E., Lin, G., Chuang, S.-M., Goderie, S.K., et al., 2008. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell – cell interactions. Cell Stem Cell 3, 289 – 300.

Shinohara, T., Avarbock, M.R., Brinster, R.L. 1999. β1and a6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Nat. Acad. Sci. 96, 5504 – 5509.

Simons, M., Horowitz, A. 2001. Syndecan-4-mediated signalling. Cell Signal 13, 855 – 862.

Sizonenko, S.V., Bednarek, N., Gressens, P. 2007. Growth factors and plasticity. Semin. Fetal Neonatal Med. 12, 241 – 249.

Skaper, S.D. 2005. Neuronal growth-promoting and inhibitory cues in neuroprotection and neuroregeneration. Ann. NY Acad. Sci. 1053, 376 – 385.

Suбrez-Бlvarez, B., Lуpez-Vбzquez, A., Lуpez-Larrea, C. 2012. Mobilization and homing of hematopoietic stem cells. In: Lуpez-Larrea, C., Lуpez-Vбzquez, A., Suбrez-Бlvarez, B. (eds.) Stem Cell Transplantation. New York: Springer.

Tamm, C., Kjellen, L., Li, J.P. 2012. Heparan sulfate biosynthesis enzymes in embryonic stem cell biology. J. Histochem. Cytochem. 60, 943 – 949.

Teicher, B.A., Fricker, S.P. 2010. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 16, 2927 – 2931.

Tozer, G.M., Kanthou, C., Baguley, B.C. 2005. Disrupting tumour blood vessels. Nat. Rev. Cancer 5, 423 – 435.

Trentin, A.G. 2006. Thyroid hormone and astrocyte morphogenesis. J. Endocrinol. 189, 189 – 197.

Van Den Berg, D.J., Sharma, A.K., Bruno, E., Hoffman, R. 1998. Role of members of the Wnt gene family in human hematopoiesis. Blood 92, 3189 – 3202.

Visvader, J.E., Lindeman, G.J. 2008. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer, 8, 755 – 768.

Wade, A., Mckinney, A., Phillips, J.J. 2014. Matrix regulators in neural stem cell functions. Biochim. Biophys. Acta, 1840(8), 2520 – 2525.

Wang, L.D., Wagers, A.J. 2011. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat. Rev. Mol. Cell Biol. 12, 643 – 655.

Wang, X., Harris, R.E., Bayston, L.J., Ashe, H.L. 2008. Type IV collagens regulate BMP signalling in Drosophila. Nature 455, 72 – 77.

Wang, R., Chadalavada, K., Wilshire, J., Kowalik, U., Hovinga, K.E., Geber, A., et al., 2010. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468, 829 – 833.

Wartlick, O., Kicheva, A., Gonzбlez-Gaitбn, M. 2009. Morphogen gradient formation. Cold Spring Harb. Perspect. Biol. 1.

Watt, F.M. 2002. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 21, 3919 – 3926.

Weiss, L. 1976. The hematopoietic microenvironment of the bone marrow: an ultrastructural study of the stroma in rats. Anatom. Rec. 186, 161 – 184.

Wijelath, E.S., Rahman, S., Namekata, M., Murray, J., Nishimura, T., Mostafavi-Pour, Z., et al., 2006. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circulat. Res. 99, 853 – 860.

Woods, A., Oh, E.-S., Couchman, J.R. 1998. Syndecan proteoglycans and cell adhesion. Matrix Biol. 17, 477 – 483.

Xiao, G., Wang, D., Benson, M.D., Karsenty, G., Franceschi, R.T. 1998. Role of the a2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J. Biol. Chem. 273, 32 988 – 32 994.

Xie, T., Spradling, A.C. 2000. A niche maintaining germ line stem cells in the drosophila ovary. Science 290, 328 – 330.

Yamazaki, S., Ema, H., Karlsson, G., Yamaguchi, T., Miyoshi, H., Shioda, S., et al., 2011. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146 – 1158.

Yan, D., Lin, X. 2009. Shaping morphogen gradients by proteoglycans. Cold Spring Harb. Perspect. Biol. 1.

Yang, Z.-J., Wechsler-Reya, R.J. 2007. Hit ’em where they live: targeting the cancer stem cell niche. Cancer Cell 11, 3 – 5.

Yayon, A., Klagsbrun, M., Esko, J.D., Leder, P., Ornitz, D.M. 1991. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841 – 848.

Yi, S.-Y., Hao, Y.-B., Nan, K.-J., Fan, T.-L. 2013. Cancer stem cells niche: a target for novel cancer therapeutics. Cancer Treat. Rev. 39, 290 – 296.

Zhao, C., Deng, W., Gage, F.H. 2008. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645 – 660.

Zhu, T.S., Costello, M.A., Talsma, C.E., Flack, C.G., Crowley, J.G., Hamm, L.L., et al., 2011. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res. 71, 6061 – 6072.

0

Добавить комментарий

Войти с помощью: 

Ваш e-mail не будет опубликован. Обязательные поля помечены *