Principles of stem cell biology and cancer: future applications and therapeutics. Edited by T. Regad, T. J. Sayers and R. C. Rees. John Wiley & Sons (2015)

Part II. Cancer stem cells

Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen M., et al., 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003 – 1007.

Barker, N., Ridgway, R.A., van Es, J.H., van de Wetering, M., Begthel, H., van den Born, M., et al., 2009. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608 – 611.

Barker, N., van Oudenaarden, A., Clevers, H. 2012. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11, 452 – 460.

Bjerknes, M., Cheng, H. 1999. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116, 7 – 14.

Bjerknes, M., Cheng, H. 2002. Multipotential stem cells in adult mouse gastric epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G767 – G777.

Bu, P., Chen, K.Y., Chen, J.H., Wang, L., Walters, J., Shin, Y.J., et al., 2013. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell 12, 602 – 615.

Buczacki, S.J., Zecchini, H.I., Nicholson, A.M., Russell, R., Vermeulen, L., Kemp, R., Winton, D.J. 2013. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65 – 69.

Cheng, H., Leblond, C.P. 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am. J. Anat. 141, 537 – 561.

Clevers, H. 2013. The intestinal crypt, a prototype stem cell compartment. Cell 154, 274 – 284.

Dalerba, P., Dylla, S.J., Park, I.K., Liu, R., Wang, X., Cho, R.W., et al., 2007. Phenotypic characterization of human colorectal cancer stem cells. Proc. Nat. Acad. Sci. USA 104, 10 158 – 10 163.

De Mey, J.R., Freund, J.N. 2013. Understanding epithelial homeostasis in the intestine: an old battlefield of ideas, recent breakthroughs and remaining controversies. Tissue Barriers 1, e24965.

De Sousa, E.M., Vermeulen, L., Richel, D., Medema, J.P. 2011a. Targeting Wnt signaling in colon cancer stem cells. Clin. Cancer Res. 17, 647 – 653.

De Sousa, E.M.F., Colak, S., Buikhuisen, J., Koster, J., Cameron, K., de Jong, J.H., et al., 2011b. Methylation of cancer-stem-cell-associated Wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell 9, 476 – 485.

Deka, J., Wiedemann, N., Anderle, P., Murphy-Seiler, F., Bultinck, J., Eyckerman, S., et al., 2010. Bcl9/Bcl9l are critical for Wnt-mediated regulation of stem cell traits in colon epithelium and adenocarcinomas. Cancer Res. 70, 6619 – 6628.

Dieter, S.M., Ball, C.R., Hoffmann, C.M., Nowrouzi, A., Herbst, F., Zavidij, O., et al., 2011. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9, 357 – 365.

Fearon, E.R., Vogelstein, B. 1990. A genetic model for colorectal tumorigenesis. Cell 61, 759 – 767.

Gerger, A., Zhang, W., Yang, D., Bohanes, P., Ning, Y., Winder, T., et al., 2011. Common cancer stem cell gene variants predict colon cancer recurrence. Clin. Cancer Res. 17, 6934 – 6943.

He, X.C., Yin, T., Grindley, J.C., Tian, Q., Sato, T., Tao, W.A., et al., 2007. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat. Genet. 39, 189 – 198.

Hoey, T., Yen, W.C., Axelrod, F., Basi, J., Donigian, L., Dylla, S., et al., 2009. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5, 168 – 177.

Huang, E.H., Hynes, M.J., Zhang, T., Ginestier, C., Dontu, G., Appelman, H., et al., 2009. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69, 3382 – 3389.

Hwang, W.L., Jiang, J.K., Yang, S.H., Huang, T.S., Lan, H.Y., Teng, H.W., et al., 2014.

MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat. Cell Biol. 16, 268 – 280.

Iizuka, M., Konno, S. 2011. Wound healing of intestinal epithelial cells. World J. Gastroenterol. 17, 2161 – 2171.

Iliou, M.S., Da Silva-Diz, V., Carmona, F.J., Ramalho-Carvalho, J., Heyn, H., Villanueva, A., et al., 2014. Impaired DICER1 function promotes stemness and metastasis in colon cancer. Oncogene 33, 4003 – 4015.

Irollo, E., Pirozzi, G. 2013. CD133: to be or not to be, is this the real question? Am. J. Trans. Res. 5, 563 – 581.

Joudeh, J., Allen, J.E., Das, A., Prabhu, V., Farbaniec, M., Adler, J., El-Deiry, W.S., 2013. Novel antineoplastics targeting genetic changes in colorectal cancer. Adv. Exp. Med. Biol. 779, 1 – 34.

Jung, P., Sato, T., Merlos-Suбrez, A., Barriga, F.M., Iglesisas, M., Rossell, D., et al., 2011. Isolation and in vitro expansion of human colonic stem cells. Nat. Med. 17, 1225 – 1227.

Kemper, K., Prasetyanti, P.R., De Lau, W., Rodermond, H., Clevers, H., Medema, J.P. 2012. Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 30, 2378 – 2386.

Kreso, A., Van Galen, P., Pedley, N.M., Lima-Fernandes, E., Frelin, C., Davis, T., et al., 2014. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 20, 29 – 36.

Leder, K., Pitter, K., Laplant, Q., Hambardzumyan, D., Ross, B.D., Chan, T.A., et al., 2014. Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules. Cell 156, 603 – 616.

Lu, J., Ye, X., Fan, F., Xia, L., Bhattacharya, R., Bellister, S., et al., 2013. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23, 171 – 185.

Lu, Y.X., Yuan, L., Xue, X.L., Zhou, M., Liu, Y., Zhang, C., et al., 2014. Regulation of colorectal carcinoma stemness, growth, and metastasis by an miR-200c-Sox2-negative feedback loop mechanism. Clin. Cancer Res. 20(10), 2631 – 2642.

Merlos-Suarez, A., Barriga, F.M., Jung, P., Iglesias, M., Cйspedes, M.V., Rossell, D., et al., 2011. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8, 511 – 524.

Metcalfe, C., Kljavin, N.M., Ybarra, R., De Sauvage, F.J. 2014. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14, 149 – 159.

Montgomery, R.K., Carlone, D.L., Richmond, C.A., Farilla, L., Krenendonk, M.E.G., Henderson, D.E., et al., 2011. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc. Nat. Acad. Sci. USA 108, 179 – 184.

Munoz, J., Stange, D.E., Schepers, A.G., van de Wetering, M., Koo, B.K., Itzkovitz, S., et al., 2012. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J. 31, 3079 – 3091.

Myant, K.B., Cammareri, P., McGhee, E.J., Ridgway, R.A., Huels, D.J., Cordero, J.B., et al., 2013. ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 12, 761 – 773.

Nakanishi, Y., Seno, H., Fukuoka, A., Ueo, T., Yamaga, Y., Maruno, T., et al., 2013. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat. Genet. 45, 98 – 103.

O’Brien, C.A., Pollett, A., Gallinger, S., Dick, J.E. 2007. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106 – 110. O’Brien, C.A., Kreso, A., Ryan, P., Hermans, K.G., Gibson, L., Wang, Y., et al., 2012.

ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell 21, 777 – 792.

Pang, R., Law, W.L., Chu, A.C.Y., Poon, J.T., Lam, C.S.C., Chow, A.K.M., et al., 2010. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6, 603 – 615.

Potten, C.S., Al-Barwari, S.E., Searle, J. 1978. Differential radiation response amongst proliferating epithelial cells. Cell Tissue Kinet. 11, 149 – 160.

Potten, C.S., Owen, G., Booth, D. 2002. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115, 2381 – 2388.

Powell, A.E., Wang, Y., Li, Y., Poulin, E.J., Means, A.L., Washington, M.K., et al., 2012. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149, 146 – 158.

Prabhu, V.V., Allen, J.E., Hong, B., Zhang, S., Cheng, H., El-Deiry, W.S. 2012. Therapeutic targeting of the p53 pathway in cancer stem cells. Expert Opin. Ther. Targets 16, 1161 – 1174.

Puglisi, M.A., Tesori, V., Lattanzi, W., Gasbarrini, G.B., Gasbarrini, A. 2013. Colon cancer stem cells: controversies and perspectives. World J. Gastroenterol. 19, 2997 – 3006.

Ricci-Vitiani, L., Lombardi, D.G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., De Maria, R. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111 – 115.

Ritsma, L., Ellenbroek, S.I., Zomer, A., Snippert, H.J., de Sauvage, F.J., Simons, B.D., et al., 2014. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 362 – 365.

Sangiorgi, E., Capecchi, M.R. 2008. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915 – 920.

Sato, T., van Es, J.H., Snippert, H.J., et al., 2011. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415 – 418.

Schepers, A.G., Vries, R., van den Born, M., van de Wetering, M., Clevers, H. 2011. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J. 30, 1104 – 1109.

Schepers, A.G., Snippert, H.J., Stange, D.E., van den Born, M., van Es, J.H., van de Wetering, M., Clevers, H. 2012. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730 – 735.

Schwitalla, S., Fingerle, A.A., Cammareri, P., Nebelsiek, T., Gцktuna, S.I., Ziegler, P.K. et al., 2013. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25 – 38.

Shmelkov, S.V., Butler, J.M., Hooper, A.T., Hormigo, A., Kushner, J., Milde, T., et al., 2008. CD133 expression is not restricted to stem cells, and both CD133+ and CD133metastatic colon cancer cells initiate tumors. J. Clin. Invest. 118, 2111 – 2120.

Siegel, R., Desantis, C., Jemal, A. 2014. Colorectal cancer statistics, 2014. CA Cancer J. Clin. 64, 104 – 117.

Sikandar, S.S., Pate, K.T., Anderson, S., Dizon, D., Edwards, R.A., Waterman, M.L., Lipkin, S.M. 2010. NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Res. 70, 1469 – 1478.

Snippert, H.J., van Es, J.H., van den Born, M., Begthel, H., Stange, D.E., Barker, N., Clevers, H. 2009. Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology 136, 2187 – 2194 e1.

Su, Y.J., Lai, H.M., Chang, Y.W., Chen, G.Y., Lee, J.L. 2011. Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J. 30, 3186 – 3199.

Takeda, N., Jain, R., LeBoeuf, M.R., Wang, Q., Lu, M.M., Epstein, J.A. 2011. Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420 – 1424.

Tian, H., Biehs, B., Warming, S., Leong, K.G., Rangell, L., Klein, O.D., de Sauvage, F.J. 2011. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255 – 259.

Todaro, M., Alea, M.P., Di Stefano, A.B., Cammareri, P., Vermeulen, L., Iovino, F., et al., 2007. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1, 389 – 402.

Todaro, M., Gaggianesi, M., Catalano, V., Benfante, A., Iovino, F., Biffoni, M., et al., 2014. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14, 342 – 356.

Varnat, F., Duquet, A., Malerba, M., Zbinden, M., Mas, C., Gervaz, P., et al., 2009. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol. Med. 1, 338 – 351.

Vermeulen, L., Todaro, M., de Sousa Mello, F., Sprick, M.R., Kemper, K., Perez Alea, M., et al., 2008. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Nat. Acad. Sci. USA 105, 13 427 – 13 432.

Vermeulen, L., de Sousa, E.M.F., van der Heijden, M., Cameron, K., de Jong, J.H., Borovski, T., et al., 2010. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468 – 476.

Wong, V.W., Stange, D.E., Page, M.E., Buczacki, S., Wabik, A., Itami, S., et al., 2012. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat. Cell Biol. 14, 401 – 408.

Yamashita, K., Katoh, H., Watanabe, M. 2013. The homeobox only protein homeobox (HOPX) and colorectal cancer. Int. J. Mol. Sci. 14, 23 231 – 23 243.

Yan, K.S., Chia, L.A., Li, X., Ootani, A., Su, J., Lee, J.Y., et al., 2012. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc. Nat. Acad. Sci. USA 109, 466 – 471.

Yeung, T.M., Gandhi, S.C., Bodmer, W.F. 2011. Hypoxia and lineage specification of cell line-derived colorectal cancer stem cells. Proc. Nat. Acad. Sci. USA 108, 4382 – 4387.

Zeki, S.S., Graham, T.A., Wright, N.A. 2011. Stem cells and their implications for colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 8, 90 – 100.

Zhu, L., Gibson, P., Currle, D.S., Tong, Y., Richardson, R.J., Bayazitov, I.T., et al., 2009. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603 – 607.

[contact-form-7 id=»5168″ title=»Контактная форма 1″]


WordPress: 86.53MB | MySQL:1043 | 2,880sec