Principles of stem cell biology and cancer: future applications and therapeutics. Edited by T. Regad, T. J. Sayers and R. C. Rees. John Wiley & Sons (2015)

Part II. Cancer stem cells

Aboseif, S. 1999. Mesenchymal reprogramming of adult human epithelial differentiation. Differentiation 65(2), 113 – 118.

Albini, A., Sporn, M.B. 2007. The tumour microenvironment as a target for chemoprevention. Nat. Rev. Cancer 7(2), 139 – 47.

Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F. 2003. Prospective identification of tumorigenic breast cancer cells. Proc. Nat. Acad. Sci. USA 100(7), 3983 – 3988.

Arendt, L.M., Rudnick, J.A., Keller, P.J., Kuperwasser, C. 2010. Stroma in breast development and disease. Semin. Cell Development. Biol. 21(1), 11 – 18.

Asiedu, M.K., Ingle, J.N., Behrens, M.D., Radisky, D.C., Knutson, K.L. 2011. TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 71(13), 4707 – 4719.

Asselin-Labat, M.L., Vaillant, F., Sheridan, J.M., Pal, B., Wu, D., Simpson, E.R., et al., 2010. Control of mammary stem cell function by steroid hormone signalling. Nature 465(7299), 798 – 802.

Bapat, S.A., Malie, A.M., Koppikar, C.B., Kurrey, N.K. 2005. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 65(8), 3025 – 3029.

Baylin, S.B., Ohm, J.E. 2006. Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer 6(2), 107 – 116.

Benoy, I.H., Salgado, R., Van Dam, P., Geboers, K., Van Marck, E., Scharpй, S., et al., 2004. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin. Cancer Res. 10(21), 7157 – 7162.

Beyer Nardi, N., da Silva Meirelles, L. 2006. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb. Exp. Pharmacol. (174), 249 – 282.

Bhowmick, N.A., Chytil, A., Plieth, D., Gorska, A.E., Dumont, N., Shappell, S., et al., 2004. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659), 848 – 851.

Bian, Z.Y., Li, G., Gan, Y.K., Hao, Y.Q., Xu, W.T., Tang, T.T. 2009. Increased number of mesenchymal stem cell-like cells in peripheral blood of patients with bone sarcomas. Arch. Med. Res. 40(3), 163 – 168.

Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L.A., et al., 2001. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Nat. Acad. Sci. USA 98(18), 10 356 – 10 361.

Brabletz, T. 2012. To differentiate or not – routes towards metastasis. Nat. Rev. Cancer 12(6), 425 – 436.

Burness, M.L., Sipkins, D.A. 2010. The stem cell niche in health and malignancy. Semin. Cancer Biol. 20(2), 107 – 115.

Calabrese, C., Poppleton, H., Kocak, M., Hogg, T.L., Fuller, C., Hamner, B., et al., 2007. A perivascular niche for brain tumor stem cells. Cancer Cell 11(1), 69 – 82. Caplan, A.I. 1991. Mesenchymal stem cells. J. Orthop. Res. 9(5), 641 – 650.

Carreras, A., Almendros, I., Acerbi, I., Montserrat, J.M., Navajas, D., Farrй, R. 2009. Obstructive apneas induce early release of mesenchymal stem cells into circulating blood. Sleep 32(1), 117 – 119.

Celia-Terrassa, T., Meca-Cortйs, O., Mateo, F., de Paz, A.M., Rubio, N., Arnal-Estapй, A., et al., 2012. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J. Clin. Invest. 122(5), 1849 – 1868.

Chaffer, C.L., Weinberg, R.A. 2011. A perspective on cancer cell metastasis. Science 331(6024), 1559 – 1564.

Chaffer, C.L., Brennan, J.P., Slavin, J.L., Blick, T., Thompson, E.W., Williams, E.D. 2006. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res. 66(23), 11 271 – 11 288.

Chamberlain, G., Fox, J., Ashton, B., Middleton, J. 2007. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11), 2739 – 2749.

Chao, K.C., Yang, H.T., Chen, M.W. 2012. Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. J. Cell Mol. Med. 16(8), 1803 – 1815.

Chapel, A., Bertho, J.M., Bensidhoum, M., Fouillard, L., Young, R.G., Frick, J., et al., 2003. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J. Gene. Med. 5(12), 1028 – 1038.

Charafe-Jauffret, E., Monville, F., Ginestier, C., Dontu, G., Birnbaum, D., Wicha, M.S. 2008. Cancer stem cells in breast: current opinion and future challenges. Pathobiology 75(2), 75 – 84.

Chaturvedi, P., Gilkes, D.M., Wong, C.C., Kshitiz, Lou, W., Zhang, H., et al., 2013. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J. Clin. Invest. 123(1), 189 – 205.

Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., et al., 2006. Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66(19), 9339 – 9344.

Collins, A.T., Berry, P.A., Hyde, C., Stower, M.J., Maitland, N.J. 2005. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65(23), 10 946 – 10 951.

Corre, J., Labat, E., Espagnolle, N., Hйbraud, B., Avet-Loiseau, H., Roussel, M., et al., 2012. Bioactivity and prognostic significance of growth differentiation factor GDF15 secreted by bone marrow mesenchymal stem cells in multiple myeloma. Cancer Res. 72(6), 1395 – 1406.

Croker, A.K., Allan, A.L. 2008. Cancer stem cells: implications for the progression and treatment of metastatic disease. J. Cell Mol. Med. 12(2), 374 – 390.

Deans, R.J., Moseley, A.B. 2000. Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28(8), 875 – 884.

De Luca, A., Gallo, M., Aldinucci, D., Ribatti, D., Lamura, L., D’Alessio, A., et al., 2011. Role of the EGFR ligand/receptor system in the secretion of angiogenic factors in mesenchymal stem cells. J. Cell Physiol. 226(8), 2131 – 2138.

De Ugarte, D.A., Morizono, K., Elbarbary, A., Alfonso, Z., Zuk, P.A., Zhu, M., et al., 2003. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3), 101 – 109.

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al., 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4), 315 – 317.

Douville, J., Beaulieu, R., Balicki, D. 2009. ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cell Dev. 18(1), 17 – 25.

Duda, D.G., Kozin, S.V., Kirkpatrick, N.D., Xu, L., Kukumura, D., Jain, R.K. 2011. CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin. Cancer Res. 17(8), 2074 – 2080.

Dvorak, H.F. 1986. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315(26), 1650 – 1659.

Dwyer, R.M., Potter-Beirne, S.M., Harrington, K.A., Lowery, A.J., Hennessy, E., Murphy, J.M., et al., 2007. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin. Cancer Res. 13(17), 5020 – 5027.

El-Haibi, C.P., Karnoub, A.E. 2010. Mesenchymal stem cells in the pathogenesis and therapy of breast cancer. J. Mammary Gland Biol. Neoplasia 15(4), 399 – 409.

El-Haibi, C.P., Bell, G.W., Zhang, J., Collmann, A.Y., Wood, D., Scherber, C.M., et al., 2012. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc. Nat. Acad. Sci. USA 109(43), 17 460 – 17 465.

Erez, N., Truitt, M., Olson, P., Arron, S.T., Hanahan, D. 2010. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17(2), 135 – 147.

Erices, A., Conget, P., Minguell, J.J. 2000. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 109(1), 235 – 242.

Eslaminejad, M.B., Vahabi, S., Shariati, M., Nazarian, H. 2010. In vitro growth and characterization of stem cells from human dental pulp of deciduous versus permanent teeth. J. Dent. (Tehran) 7(4), 185 – 195.

Fang, D., Nguyen, T.K., Leishear, K., Finko, R., Kulp, A.N., Hotz, S., et al., 2005. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65(20), 9328 – 9337.

Fierro, F.A., Sierralta, W.D., Epuсan, M.J., Minguell, J.J. 2004. Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination. Clin. Exp. Metastasis 21(4), 313 – 319.

Friedenstein, A.J., Chailakhjan, R.K., Lalykina, K.S. 1970. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3(4), 393 – 403.

Frisch, S.M., Francis, H. 1994. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124(4), 619 – 626.

Fukuda, K., Saikawa, Y., Ohashi, M., Kumagai, K., Kitajima, M., Okano, H., et al., 2009. Tumor initiating potential of side population cells in human gastric cancer. Int. J. Oncol. 34(5), 1201 – 1207.

Ginestier, C., Hur, M.H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., et al., 2007. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5), 555 – 567.

Ginestier, C., Liu, S., Diebel, M.E., Korkaya, H., Luo, M., Brown, M., et al., 2010. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J. Clin. Invest. 120(2), 485 – 497.

Goldstein, R.H., Reagan, M.R., Anderson, K., Kaplan, D.L., Rosenblatt, M. 2010. Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Res. 70(24), 10 044 – 10 050.

Hass, R., Otte, A. 2012. Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun. Signal 10(1), 26.

Hemmati, H.D., Nakano, I., Lazareff, J.A., Masterman-Smith, M., Geschwind, D.H., Bronner-Fraser, M., Kornblum, H.I. 2003. Cancerous stem cells can arise from pediatric brain tumors. Proc. Nat. Acad. Sci. USA 100(25), 15 178 – 15 183.

Hermann, P.C., Huber, S.L., Herrler, T., Aicher, A., Ellwart, J.W., Guba, M., et al., 2007. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3), 313 – 323.

Hilton, M.J., Tu, X., Wu, X., Bai, S., Zhao, H., Kobayashi, T., et al., 2008. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat. Med. 14(3), 306 – 314.

Ho, M.M., Ng, A.V., Lam, S., Hung, J.Y. 2007. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67(10),  4827 – 4833.

Hombauer, H., Minguell, J.J. 2000. Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells. Br. J. Cancer 82(7), 1290 – 1296.

Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A.M., Silberstein, L.E. 2006. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24(4), 1030 – 1041.

Hu, M., Polyak, K. 2008. Molecular characterisation of the tumour microenvironment in breast cancer. Eur. J. Cancer 44(18), 2760 – 2765.

Iliopoulos, D., Hirsch, H.A., Struhl, K. 2009. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4), 693 – 706.

Iliopoulos, D., Jaeger, S.A., Hirsch, H.A., Bulyk, M.L., Struhl, K. 2010. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol. Cell 39(4), 493 – 506.

Imitola, J., Raddassi, K., Park, K.L., Mueller, F.J., Nieto, M., Teng, Y.D., et al., 2004. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc. Nat. Acad. Sci. USA 101(52), 18 117 – 18 122.

Ivanova, N.B., Dimos, J.T., Schaniel, C., Hackney, J.A., Moore, K.A., Lemischka, I.R. 2002. A stem cell molecular signature. Science 298(5593), 601 – 604.

Jaiswal, N., Haynesworth, S.E., Caplan, A.I., Bruder, S.P. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem. 64(2), 295 – 312.

Jones, D.L., Wagers, A.J. 2008. No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol. 9(1), 11 – 21.

Joshi, P.A., Jackson, H.W., Beristain, A.G., Di Grappa, M.A., Mote, P.A., Clarke, C.L., et al., 2010. Progesterone induces adult mammary stem cell expansion. Nature 465(7299), 803 – 807.

Karnoub, A.E., Dash, A.B., Vo, A.P., Sullivan, A., Brooks, M.W., Bell, G.W., et al., 2007. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162), 557 – 563.

Khakoo, A.Y., Pati, S., Anderson, S.A., Reid, W., Elshal, M.F., Rovira, I.I., et al., 2006. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J. Exp. Med. 203(5), 1235 – 1247.

Kidd, S., Spaeth, E., Dembinski, J.L., Dietrich, M., Watson, K., Klopp, A., et al., 2009. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27(10), 2614 – 2623.

Klopp, A.H., Lacerda, L., Gupta, A., Debeb, B.G., Solley, T., Li, L., et al., 2010. Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS One 5(8), e12180.

Klymkowsky, M.W., Savagner, P. 2009. Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am. J. Pathol. 174(5), 1588 – 1593.

Korkaya, H., Liu, S., Wicha, M.S. 2011a. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J. Clin. Invest. 121(10), 3804 – 3809.

Korkaya, H., Liu, S., Wicha, M.S. 2011b. Regulation of cancer stem cells by cytokine networks: attacking cancer’s inflammatory roots. Clin. Cancer Res. 17(19), 6125 – 6129.

Korkaya, H., Kim, G.I., Davis, A., Malik, F., Henry, N.L., Ithimakin, S., et al., 2012.Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol. Cell 47(4), 570 – 584.

Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al., 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464), 645 – 648.

Lee, K., Gjorevski, N., Boghaert, E., Radisky, D.C., Nelson, C.M. 2011. Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis. EMBO J. 30(13), 2662 – 2674.

Li, H.J., Reinhardt, F., Herschman, H.R., Weinberg, R.A. 2012. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov. 2(9), 840 – 855.

Littlepage, L.E., Egeblad, M., Werb, Z. 2005. Coevolution of cancer and stromal cellular responses. Cancer Cell 7(6), 499 – 500.

Liu, S., Ginestier, C., Ou, S.J., Clouthier, S.G., Patel, S.H., Monville, F., et al., 2011. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 71(2), 614 – 624.

Liu, S., Cong, Y., Wang, D., Sun, Y., Deng, L., Liu, Y., et al., 2014. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2(1), 78 – 91.

Loebinger, M.R., Kyrtatos, P.G., Turmaine, M., Price, A.N., Pankhurst, Q., Lythgoe, M.F., Janes, S.M. 2009. Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res. 69(23), 8862 – 8867.

Ma, X.J., Dahiya, S., Richardson, E., Erlander, M., Sgori, D.C. 2009. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 11(1), R7.

Majumdar, M.K., Thiede, M.A., Mosca, J.D., Moorman, M., Gerson, S.L. 1998. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell Physiol. 176(1), 57 – 66.

Majumdar, M.K., Keane-Moore, M., Buyaner, D., Hardy, W.B., Moorman, M.A., McIntosh, K.R., Mosca, J.D. 2003. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J. Biomed. Sci. 10(2), 228 – 241.

Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., et al., 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4), 704 – 715.

Mansilla, E., Marнn, G.H., Drago, H., Sturla, F., Salas, E., Gardiner, C., et al., 2006. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplant Proc. 38(3), 967 – 969.

Martin, F.T., Dwyer, R.M., Kelly, J., Khan, S., Murphy, J.M., Curran, C., et al., 2010. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res. Treat. 124(2), 317 – 326.

Menon, L.G., Picinich, S., Koneru, R., Gao, H., Lin, S.Y., Koneru, M., et al., 2007. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25(2), 520 – 528.

Moharita, A.L., Taborga, M., Corcoran, K.E., Bryan, M., Patel, P.S., Rameshwar, P. 2006. SDF-1alpha regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Blood 108(10), 3245 – 3252.

Morel, A.P., Liиvre, M., Thomas, C., Hinkal, G., Ansieau, S., Puisieux, A. 2008. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3(8), e2888.

Motaln, H., Schichor, C., Lah, T.T. 2010. Human mesenchymal stem cells and their use in cell-based therapies. Cancer 116(11), 2519 – 2530.

Muraglia, A., Cancedda, R., Quarto, R. 2000. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J. Cell Sci. 113(Pt 7), 1161 – 1166.

Nakamizo, A., Marini, F., Amano, T., Khan, A., Studney, M., Gumin, J., et al., 2005. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 65(8), 3307 – 3318.

Noel, D., Djouad, F., Jorgense, C. 2002. Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Curr. Opin. Investig. Drugs 3(7), 1000 – 1004.

O’Brien, C.A., Pollett, A., Gallinger, S., Dick, J.E. 2007. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123), 106 – 110.

O’Brien, C.A., Kreso, A., Jamieson, C.H. 2010. Cancer stem cells and self-renewal. Clin. Cancer Res. 16(12), 3113 – 3120.

Ocana, O.H., Cуrcoles, R., Fabra, A., Moreno-Bueno, G., Acloque, H., Vega, S., et al., 2012. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22(6), 709 – 724.

Paget, S. 1989. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8(2), 98 – 101.

Patel, S.A., Meyer, J.R., Greco, S.J., Corcoran, K.E., Bryan, M., Rameshwar, P. 2010.  Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J. Immunol. 184(10), 5885 – 5894.

Peck, J.D., Hulka, B.S., Poole, C., Savitz, D.A., Baird, D., Richardson, B.E. 2002. Steroid hormone levels during pregnancy and incidence of maternal breast cancer. Cancer Epidemiol. Biomarkers Prev. 11(4), 361 – 368.

Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., et al., 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143 – 147.

Pittenger, M., Vanguri, P., Simonetti, D., Young, R. 2002. Adult mesenchymal stem cells: potential for muscle and tendon regeneration and use in gene therapy. J. Musculoskelet. Neuronal Interact. 2(4), 309 – 320.

Polyak, K., Haviv, I., Campbell, I.G. 2009. Co-evolution of tumor cells and their microenvironment. Trends Genet. 25(1), 30 – 38.

Ponte, A.L., Marais, E., Gallay, N., Langonnй, A., Delorme, B., Hйrault, O., et al., 2007. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25(7), 1737 – 1745.

Roobrouck, V.D., Ulloa-Montoya, F., Verfaillie, C.M. 2008. Self-renewal and differentiation capacity of young and aged stem cells. Exp. Cell Res. 314(9), 1937 – 1944.

Sansone, P., Storci, G., Tavolari, S., Guarnieri, T., Giovannini, C., Taffurelli, M., et al., 2007. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J. Clin. Invest. 117(12), 3988 – 4002.

Sasportas, L.S., Kasmieh, R., Wakimoto, H., Hingtgen, S., van de Water, J.A., Mohapatra, G., et al., 2009. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc. Nat. Acad. Sci. USA 106(12), 4822 – 4827.

Schmidt, N.O., Przylecki, W., Yang, W., Ziu, M., Teng, Y., Kim, S.U., et al., 2005. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7(6), 623 – 629.

Sethi, N., Dai, X., Winter, C.G., Kang, Y. 2011. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2), 192 – 205.

Shin, S.Y., Rath, O., Zebisch, A., Choo, S.M., Kolch, W., Cho, K.H. 2010. Functional roles of multiple feedback loops in extracellular signal-regulated kinase and Wnt signaling pathways that regulate epithelial-mesenchymal transition. Cancer Res. 70(17), 6715 – 6724.

Shipitsin, M., Polyak, K. 2008. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab. Invest. 88(5), 459 – 463.

Sipkins, D.A., Wei, X., Wu, J.W., Runnels, J.M., Cфtй, D., Means, T.K., et al., 2005. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435(7044), 969 – 973.

Son, B.R., Marquez-Curtiz, L.A., Kucia, M., Wysoczynski, M., Turner, A.R., Ratajczak, J., et al., 2006. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24(5), 1254 – 1264.

Sonabend, A.M., Ulasov, I.V., Tyler, M.A., Rivera, A.A., Mathis, J.M., Lesniak, M.S. 2008. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 26(3), 831 – 841.

Sordi, V., Malosio, M.L., Marchesi, F., Mercalli, A., Melzi, R., Giordano, T., et al., 2005. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106(2), 419 – 427.

Stankic, M., Pavlovic, S., Chin, Y., Brogi, E., Padua, D., Norton, L., et al., 2013. TGF-beta-Id1 signaling opposes Twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition. Cell Rep. 5(5), 1228 – 1242.

Studeny, M., Marini, F.C., Champlin, R.E., Zompetta, C., Fidler, I.J., Andreeff, M. 2002. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62(13), 3603 – 3608.

Sugaya, K. 2003. Potential use of stem cells in neuroreplacement therapies for neurodegenerative diseases. Int. Rev. Cytol. 228, 1 – 30.

Takebe, N., Warren, R.Q., Ivy, S.P. 2011. Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelialto-mesenchymal transition. Breast Cancer Res. 13(3), 211.

Tan, W., Zhang, W., Strasner, A., Grivennikov, S., Cheng, J.Q., Hoffman, R.M., Karin, M. 2011. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470(7335), 548 – 553.

Thiery, J.P., Sleeman, J.P. 2006. Complex networks orchestrate epithelialmesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7(2), 131 – 142.

Tiwari, N., Tiwari, V.K., Waldmeier, L., Balwierz, P.J., Arnold, P., Pachkov, M., et al., 2013. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell 23(6), 768 – 783. Trumpp, A., Wiestler, O.D. 2008. Mechanisms of disease: cancer stem cells – targeting the evil twin. Nat. Clin. Pract. Oncol. 5(6), 337 – 347.

Valdes, F., Alvarez, A.M., Locascio, A., Vega, S., Herrera, B., Fernбndez, M., et al., 2002. The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor Beta in fetal rat hepatocytes. Mol. Cancer Res. 1(1), 68 – 78.

Vermeulen, L., Tadaro, M., de Sousa Mello, F., Sprick, M.R., Kemper, K., Perez Alea, M., et al., 2008. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Nat. Acad. Sci. USA 105(36), 13 427 – 13 432.

Wang, M.L., Pan, C.M., Chiou, S.H., Chen, W.H., Chang, H.Y., Lee, O.K., et al., 2012. Oncostatin m modulates the mesenchymal-epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect. Cancer Res. 72(22), 6051 – 6064.

Waterman, R.S., Tomchuck, S.L., Henkle, S.L., Betancourt, A.M. 2010. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One 5(4), e10088.

Waterman, R.S., Henkle, S.L., Betancourt, A.M. 2012. Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS One 7(9), e45590.

Weaver, V.M., Fischer, A.H., Peterson, O.W., Bissell, M.J. 1996. The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem. Cell Biol. 74(6), 833 – 851.

Wellner, U., Schubert, J., Burk, U.C., Schmalhofer, O., Zhu, F., Sonntag, A., et al., 2009. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 11(12), 1487 – 1495.

Xia, X., Chen, W., Ma, T., Xu, G., Liu, H., Liang, C., et al., 2012. Mesenchymal stem cells administered after liver transplantation prevent acute graft-versus-host disease in rats. Liver Transpl. 18(6), 696 – 706.

Xu, Q., Wang, L., Li, H., Han, Q., Li, J., Qu, X., et al., 2012. Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-beta. Int. J. Oncol. 41(3), 959 – 968.

Yamashita, N., Tokunaga, E., Kitao, H., Hisamatsu, Y., Taketani, K., Akiyoshi, S., et al., 2013. Vimentin as a poor prognostic factor for triple-negative breast cancer. J. Cancer Res. Clin. Oncol. 139(5), 739 – 746.

Yan, X.L., Fu, C.J., Chen, L., Qin, J.H., Zeng, Q., Yuan, H.F., et al., 2012. Mesenchymal stem cells from primary breast cancer tissue promote cancer proliferation and enhance mammosphere formation partially via EGF/EGFR/Akt pathway. Breast Cancer Res. Treat. 132(1), 153 – 164.

Yang, B., Wu, X., Mao, Y., Bao, W., Gao, L., Zhou, P., et al., 2009. Dual-targeted antitumor effects against brainstem glioma by intravenous delivery of tumor necrosis factor-related, apoptosis-inducing, ligand-engineered human mesenchymal stem cells. Neurosurgery 65(3), 610 – 624; disc. 624.

Yao, C., Lin, Y., Chua, M.S., Ye, C.S., Bi, J., Li, W., et al., 2007. Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int. J. Cancer 121(9), 1949 – 1957.

Yoo, Y.A., Kang, M.H., Lee, H.J., Kim, B.H., Park, J.K., Kim, H.K., et al., 2011. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res. 71(22), 7061 – 7070.

Young, H.E., Steele, T.A., Bray, R.A., Hudson, J., Floyd, J.A., Hawkins, K., et al., 2001. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat. Rec. 264(1), 51 – 62.

Yu, H., Pardoll, D., Jove, R. 2009. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9(11), 798 – 809.

Zhang, Z., Wang, X., Wang, S. 2008. Isolation and characterization of mesenchymal stem cells derived from bone marrow of patients with Parkinson’s disease. In Vitro Cell Dev. Biol. Anim. 44(5 – 6), 169 – 177.

Zhao, M., Sachs, P.C., Wang, X., Dumur, C.I., Idowa, M.O., Robila, V., et al., 2012. Mesenchymal stem cells in mammary adipose tissue stimulate progression of breast cancer resembling the basal-type. Cancer Biol. Ther. 13(9), 782 – 792.

[contact-form-7 id=»5168″ title=»Контактная форма 1″]


Добавить комментарий

Войти с помощью: 

Ваш e-mail не будет опубликован. Обязательные поля помечены *