Molecular oncology. Causes of cancer and targets for treatment. Cambridge University Press (2014)

  1. Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood 1995;85:3378–404.
  2. Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends in Biochemical Science 2002;27:19–26.
  3. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. European Journal of Biochemistry 1998;254: 439–59.
  4. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305–8.
  5. Schneider P, Holler N, Bodmer JL, et al. Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. Journal of Experimental Medicine 1998;187:1205–13.
  6. Wajant H, Moosmayer D, WuЁ est T, et al. Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 2001;20:4101–6.
  7. Grell M, Wajane H, Zimmermann G, Scheurich P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proceedings of the National Academy of Sciences USA 1998;95:570–5.
  8. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994;76: 959–62.
  9. Banner DW, D’Arcy A, Janes W, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 1993;73:431–45.
  10. Schneider P, Bodmer JL, Thome M, et al. Characterization of two receptors for TRAIL. FEBS Letters 1997;416: 329–34.
  11. Schneider P, Bodmer JL, Holler N, et al. Characterization of Fas (Apo-1, CD95)-Fas ligand interaction. Journal of Biological Chemistry, 1997;272: 18827–33.
  12. Mongkolsapaya J, Grimes JM, Chen N, et al. Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nature Structural Biology 1999;6:1048–53.
  13. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487–501.
  14. Chan FK. Three is better than one: pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 2007;37:101–7.
  15. Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biology and Therapy 2005;4:139–63.
  16. Chinnaiyan AM, O’Rourke K, Tweari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995;81:505–12.
  17. Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappaB activation. Cell 1995;81:495–504.
  18. Yeh WC, Pompa JL, McCurrach ME, et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998;279:1954–8.
  19. Newton K, Harris AW, Bath ML, Smith KG, Strasser A. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO Journal, 1998; 17:706–18.
  20. Zornig M, Hueber AO, Evan G. p53-dependent impairment of T-cell proliferation in FADD dominant-negative transgenic mice. Current Biology, 1998;8:467–70.
  21. Zhang J, Cado D, Chen A, Kabra NH, Winoto A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/ Mort1. Nature 1998;392:296–300.
  22. Oberst A, Dillon CP, Weinlich R, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 2011;471:363–7.
  23. Kaiser WJ, Upton JW, Long AB, et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 2011;471:368–72.
  24. Zhang H, Zhou X, McQuade T, et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 2011;471:373–6.
  25. Chan KF, Siegel MR, Lenardo JM. Signaling by the TNF receptor superfamily and T cell homeostasis. Immunity 2000;13:419–22.
  26. O’Reilly LA, Tai L, Lee L, et al. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 2009;461:659–63.
  27. Muppidi JR, Siegel RM. Ligandindependent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death. Nature Immunology 2004;5:182–9.
  28. Holler N, Tardivel A, Kovacsovics-Banowski M, et al. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Molecular and Cellular Biology, 2003;23:1428–40.
  29. Scott FL, Stec B, Pop C, et al. The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 2009;457: 1019–22.
  30. Mace PD, Riedl SJ. Molecular cell death platforms and assemblies. Current Opinion in Cell Biology 2010;22: 828–36.
  31. Esposito D, Sankar A, Morgner N, et al. Solution NMR investigation of the CD95/FADD homotypic death domain complex suggests lack of engagement of the CD95 C terminus. Structure 2010;18:1378–90.
  32. Wang L, Yang JK, Kabaleeswaran V, et al. The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nature Structural and Molecular Biology 2010;17:1324–9.
  33. Park HH, Logette E, Raunser S, et al. Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 2007;128:533–46.
  34. Park HH. Structural analyses of death domains and their interactions. Apoptosis 2011;16:209–20.
  35. Kersse K, Verspurten J, Vanden Berghe T, Vandenabeele P. The death-fold superfamily of homotypic interaction motifs. Trends in Biochemical Science, 2011;36:541–52.
  36. Yan N, Shi Y. Mechanisms of apoptosis through structural biology. Annual Review of Cell and Developmental Biology 2005;21:35–56.
  37. Schleich K, Warnken U, Fricker N, et al. Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Molecular Cell 2012;47: 306–19.
  38. Dickens LS, Boyd RS, Jukes-Jones R, et al. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Molecular Cell 2012;47:291–305.
  39. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. Journal of Biological Chemistry 1998;273:2926–30.
  40. Salvesen GS, Dixit VM. Caspase activation: the induced-proximity model. Proceedings of the National Academy of Sciences USA 1999;96: 10964–7.
  41. Boatright KM, Renatus M, Scott FL, et al. A unified model for apical caspase activation. Molecular Cell 2003;11: 529–41.
  42. Keller N, Mares J, Zerbe O, Grutter MG. Structural and biochemical studies on procaspase-8: new insights on initiator caspase activation. Structure 2009;17:438–48.
  43. Keller N, GruЁ tter MG, Zerbe O. Studies of the molecular mechanism of caspase-8 activation by solution NMR. Cell Death and Differentiation 2010;17:710–8.
  44. Chang DW, Xing Z, Capacio VL, Peter ME, Yang X. Interdimer processing mechanism of procaspase-8 activation. EMBO Journal 2003;22:4132–42.
  45. Pop C, Fitsgerald P, Green DR, Salvesen GS. Role of proteolysis in caspase-8 activation and stabilization. Biochemistry 2007;46:4398–407.
  46. Jin Z, Li Y, Pitti R, et al. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 2009;137:721–35.
  47. Gonzalvez F, Lawrence D, Yang B, et al. TRAF2 sets a threshold for extrinsic apoptosis by tagging caspase-8 with a ubiquitin shutoff timer. Molecular Cell 2012;48:888–99.
  48. Pan G, O’Rourke K, Chinnaiyan AM, et al. The receptor for the cytotoxic ligand TRAIL. Science 1997;276:111–3.
  49. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277: 818–21.
  50. Marsters SA, Sheridan JP, Pitti RM, et al. A novel receptor for Apo2L/ TRAIL contains a truncated death domain. Current Biology 1997; 7:1003–6.
  51. Pitti RM, Marsters SA, Lawrence D et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998;396:699–703.
  52. Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. Journal of Biological Chemistry 1998;273:14363–7.
  53. LeBlanc HN, Ashkenazi A. Apo2L/ TRAIL and its death and decoy receptors. Cell Death and Differentiation, 2003;10:66–75.
  54. Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Current Opinion in Cell Biology 1999;11:255–60.
  55. Wagner KW, Punnoose EA, Januario T, et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nature Medicine 2007;13:1070–7.
  56. Shatnyeva OM, Kubarenko AV, Weber CE, et al. Modulation of the CD95induced apoptosis: the role of CD95 Nglycosylation. PLoS One 2011;6: e19927.
  57. Peter ME, Hellbardt S, Schwartz-Albiez R, et al. Cell surface sialylation plays a role in modulating sensitivity towards APO-1-mediated apoptotic cell death. Cell Death and Differentiation 1995;2:163–71.
  58. Keppler OT, Peter ME, Hinderlich S, et al. Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)mediated apoptosis and for infection by a lymphotropic virus. Glycobiology 1999;9:557–69.
  59. Swindall AF, Bellis SL. Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fasmediated apoptosis in colon carcinoma cells. Journal of Biological Chemistry 2011;286:22982–90.
  60. Feig C, Tchikov V, Schutze S, Peter ME. Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO Journal 2007;26:221–31.
  61. Chakrabandhu K, Heґrincs Z, Huault S, et al. Palmitoylation is required for efficient Fas cell death signaling. EMBO Journal 2007;26:209–20.
  62. Rossin A, Derouet M, Abdel-Sater F, Hueber AO. Palmitoylation of the TRAIL receptor DR4 confers an efficient TRAIL-induced cell death signalling. Biochemical Journal 2009;419:185–92, 2 p following 192.
  63. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997;388:190–5.
  64. Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. Journal of Biological Chemistry 1999;274:1541–8.
  65. Micheau O. Cellular FLICE-inhibitory protein: an attractive therapeutic target? Expert Opinion on Therapeutic Targets 2003;7:559–73.
  66. Golks A, Brenner D, Fritsch C, Krammer PH, Lavrik IN. c-FLIPR,a new regulator of death receptorinduced apoptosis. Journal of Biological Chemistry 2005;280: 14507–13.
  67. Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO Journal 2002;21:3704–14.
  68. Micheau O, Thome M, Schneider P, et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. Journal of Biological Chemistry 2002;277:45162–71.
  69. Yu JW, Jeffrey PD, Shi Y. Mechanism of procaspase-8 activation by c-FLIPL. Proceedings of the National Academy of Sciences USA 2009;106:8169–74.
  70. Yu JW, Shi Y. FLIP and the death effector domain family. Oncogene, 2008;27:6216–27.
  71. Kataoka T, Tschopp J. N-terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. Molecular Cell Biology 2004;24: 2627–36.
  72. Bagnoli M, Canevari S Mezzanzanica D. Cellular FLICE-inhibitory protein (c-FLIP) signalling: a key regulator of receptor-mediated apoptosis in physiologic context and in cancer. International Journal of Biochemistry and Cell Biology 2010;42:210–3.
  73. Kreuzaler P, Watson CJ. Killing a cancer: what are the alternatives? Nature Reviews Cancer 2012;12:411–24.
  74. Barnhart BC, Alappat EC, Peter ME. The CD95 type I/type II model. Seminars on Immunology 2003;15: 185–93.
  75. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO Journal 1998;17:1675–87.
  76. Ozoren N, El-Deiry WS. Defining characteristics of TypesI and II apoptotic cells in response to TRAIL. Neoplasia, 2002;4:551–7.
  77. Clem RJ, Cheng EH, Karp CL, et al. Modulation of cell death by Bcl-XL through caspase interaction. Proceedings of the National Academy of Sciences USA 1998;95:554–9.
  78. Cheng EH, Kirsch DG, Clem RJ, et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 1997;278: 1966–8.
  79. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94: 491–501.
  80. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94:481–90.
  81. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiolological Reviews 2007;87: 99–163.
  82. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–89.
  83. Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB Journal 2009;23:1625–37.
  84. Aouacheria A, Rech de Laval V, Combet C, Hardwick JM. Evolution of Bcl-2 homology motifs: homology versus homoplasy. Trendsin Cell Biology 2012;23:103–11.
  85. Scorrano L. Caspase-8 goes cardiolipin: a new platform to provide mitochondria with microdomains of apoptotic signals? Journal of Cell Biology 2008;183:579–81.
  86. Gonzalvez F, Schug ZT, Houtkooper RH, et al. Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. Journal of Cell Biology 2008;183:681–96.
  87. Le Roy C, Wrana JL. Clathrinand non-clathrin-mediated endocytic regulation of cell signalling. Nature Reviews Molecular Cell Biology 2005;6:112–26.
  88. Teis D, Huber LA. The odd couple: signal transduction and endocytosis. Cellular and Molecular Life Sciences 2003;60:2020–33.
  89. Miaczynska M, Pelkmans L, Zerial M. Not just a sink: endosomes in control of signal transduction. Current Opinion in Cell Biology 2004;16:400–6.
  90. Algeciras-Schimnich A, Shen L, Barnhart BC, et al. Molecular ordering of the initial signaling events of CD95. Molecular and Cellular Biology 2002;22:207–20.
  91. Parlato S, Giammarioli AM, Logozzi M, et al. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO Journal 2000;19:5123–34.
  92. Siegel RM, Muppidi JR, Sarker M, et al. SPOTS: signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane. Journal of Cell Biology 2004;167:735–44.
  93. Eramo A, Sargiacomo M, Ricci-Vitiani L, et al. CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells. European Journal of Immunology 2004;34:1930–40.
  94. Legembre P, Daburon S, Moreau P, Moreau JF, Taupin JL. Modulation of Fas-mediated apoptosis by lipid rafts in T lymphocytes. Journal of Immunology 2006;176:716–20.
  95. Lee KH, Feig C, Tchikov V, et al. The role of receptor internalization in CD95 signaling. EMBO Journal 2006;25:1009–23.
  96. Schutze S, Schneider-Brachert W. Impact of TNF-R1 and CD95 internalization on apoptotic and antiapoptotic signaling. Results and Problems in Cell Differentiation 2009;49:63–85.
  97. Schneider-Brachert W, Tchikov V, Merkel O, et al. Inhibition of TNF receptor 1 internalization by adenovirus 14.7K as a novel immune escape mechanism. Journal of Clinical Investigation 2006;116:2901–13.
  98. Yuan J, Kroemer G. Alternative cell death mechanisms in development and beyond. Genes and Development 2010;24:2592–602.
  99. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003;114:181–90.
  • Schneider-Brachert W, Tchikov V, Neumeyer J, et al. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 2004;21:415–28.
  • Zhao X, Liu Y, Ma Q, et al. Caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells. Biochemical and Biophysical Research Communications 2009;378:21–6.
  • Austin CD, Lawrence DA, Peden AA, et al. Death-receptor activation halts clathrin-dependent endocytosis. Proceedings of the National Academy of Sciences USA 2006;103:10283–8.
  • Kohlhaas SL, Craxton A, Sun XM, Pinkoski MJ, Cohen GM. Receptormediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Journal of Biological Chemistry 2007;282:12831–41.
  • Schutze S, Tchikov V, SchneiderBrachert W. Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nature Reviews Molecular Cell Biology 2008;9:655–62.
  • Schutze S, et al. Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem, 1999;274(15):10203–12.
  • Woo CH, Machleidt T, Adam D, et al. Inhibition of receptor internalization attenuates the TNFalpha-induced ROS generation in non-phagocytic cells. Biochemical and Biophysical Research Communications 2006;351:972–8.
  • Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell 2009;138:229–32.
  • Meylan E, Tschopp J. The RIP kinases: crucial integrators of cellular stress. Trends in Biochemical Sciences 2005;30:151–9.
  • Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunology 2009;10:348–55.
  • Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Molecular Cell 2006;22:245–57.
  • Mahoney DJ, Cheung HH, Mrad RL, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proceedings of the National Academy of Science USA 2008;105: 11778–83.
  • Varfolomeev E, Goncharov T, Fedorova AV, et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. Journal of Biological Chemistry 2008;283:24295–9.
  • Ikeda F, Deribe YL, Ska°nland SS, et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 2011;471:637–41.
  • Tokunaga F, Nakagawa T, Nakahara M, et al. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 2011;471:633–6.
  • Gerlach B, Cordier SM, Schmukle AC, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 2011;471:591–6.
  • O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT. Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Current Biology 2007;17:418–24.
  • Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008;133:693–703.
  • Clem RJ, Sheu TT, Richter BW, et al. c-IAP1 is cleaved by caspases to produce a proapoptotic C-terminal fragment. Journal of Biological Chemistry 2001;276:7602–8.
  • Hitomi J, Christofferson DE, Ng A, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008;135:1311–23.
  • Galluzzi L, Kroemer G. Necroptosis: a specialized pathway of programmed necrosis. Cell 2008;135:1161–3.
  • Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P. RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death and Differentiation 2007;14:400–10.
  • Degterev A, Hitomi J, Germsheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chemical Biology 2008;4: 313–21.
  • Tenev T, Bianchi K, Darding M, et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Molecular Cell 2011;43:432–48.
  • Feoktistova M, Geserick P, Kellert B, et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Molecular Cell 2011;43: 449–63.
  • Hahne M, Rimoldi D, SchroЁ ter M, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996;274:1363–6.
  • Strand S, Hofmann WJ, Hug H, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells–a mechanism of immune evasion? Nature Medicine 1996;2: 1361–6.
  • Leithauser F, Dhein J, Mechtersheimer G, et al. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Laboratory Investigations 1993;69:415–29.
  • Moller P, Koretz K, LeithaЁuser F, et al. Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. International Journal of Cancer 1994;57:371–7.
  • Ozoren N, Fisher MJ, Kim K, et al. Homozygous deletion of the death receptor DR4 gene in a nasopharyngeal cancer cell line is associated with TRAIL resistance. International Journal of Oncology, 2000;16:917–25.
  • Horak P, Pils D, Haller G, et al. Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Molecular Cancer Research, 2005;3:335–43.
  • Elias A, Seigelin MD, SteinmuЁ ller A, et al. Epigenetic silencing of death receptor 4 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in gliomas. Clinical Cancer Research 2009;15:5457–65.
  • Bae SI, Cheriyath V, Jacobs BS, Reu FJ, Borden EC. Reversal of methylation silencing of Apo2L/TRAIL receptor 1 (DR4) expression overcomes resistance of SK-MEL-3 and SK-MEL-28 melanoma cells to interferons (IFNs) or Apo2L/TRAIL. Oncogene 2008;27:490–8.
  • Jin Z, McDonald ER, 3rd, Dicker DT, El-Deiry WS. Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. Journal of Biological Chemistry 2004;279:35829–39.
  • Shin MS, Park WS, Kim SY, et al. Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. American Journal of Pathology 1999;154:1785–91.
  • Shin MS, Kim HS, Lee SH, et al. Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene 2002;21:4129–36.
  • Lee SH, Shin MS, Kim HS, et al. Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Research 1999;59:5683–6.
  • Pai SI, Wu GS, OzoЁ ren N, et al. Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Research 1998;58:3513–8.
  • Shin MS, Kim HS, Lee SH, et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Research 2001;61:4942–6.
  • Fisher MJ, Virmani AK, Wu L, et al. Nucleotide substitution in the ectodomain of trail receptor DR4 is associated with lung cancer and head and neck cancer. Clinical Cancer Research 2001;7:1688–97.
  • Bin L, Thorburn J, Thomas LR, et al. Tumor-derived mutations in the TRAIL receptor DR5 inhibit TRAIL signaling through the DR4 receptor by competing for ligand binding. Journal of Biological Chemistry 2007;282:28189–94.
  • Shen HW, Wu YL, Peng SY. [Overexpression and genomic amplification of decoy receptor 3 in hepatocellular carcinoma and significance thereof]. Zhonghua Yi Xue Za Zhi, 2003;83:744–7.
  • Bai C, Connolly B, Matzker ML, et al. Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proceedings of the National Academy of Sciences USA 2000;97:1230–5.
  • Ohshima K, Haraoka S, Sughara M, et al. Amplification and expression of a decoy receptor for fas ligand (DcR3) in virus (EBV or HTLV-I) associated lymphomas. Cancer Letters 2000; 160:89–97.
  • Roth W, Isenmann S, Nakamura M, et al. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Research 2001;61:2759–65.
  • Wu Y, Guo E, Yu J, Xie Q. High DcR3 expression predicts stage pN2–3 in gastric cancer. American Journal of Clinical Oncology 2008;31:79–83.
  • Tourneur L, Delluc S, Leґvy V, et al. Absence or low expression of fas-associated protein with death domain in acute myeloid leukemia cells predicts resistance to chemperiodicalapy and poor outcome. Cancer Research 2004;64:8101–8.
  • Soung YH, Lee JW, Kim SY, et al. Mutation of FADD gene is rare in human colon and stomach cancers. APMIS, 2004;112:595–7.
  • Stupack DG. Caspase-8 as a therapeutic target in cancer. Cancer Letters 2013;322:133–40.
  • Kim HS, Lee JW, Soung YH, et al. Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology 2003;125:708–15.
  • Mandruzzato S, Brasseur F, Andry G, Boon T, van der Bruggen P.A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. Journal of Experimental Medicine 1997;186: 785–93.
  • Soung YH, Lee JW, Kim SY, et al. CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Research 2005;65: 815–21.
  • Barbero S, Barila` D, Mielgo A, et al. Identification of a critical tyrosine residue in caspase 8 that promotes cell migration. Journal of Biological Chemistry 2008;283:13031–4.
  • Senft J, Helfer B, Frisch SM. Caspase-8 interacts with the p85 subunit of phosphatidylinositol 3-kinase to regulate cell adhesion and motility. Cancer Research 2007;67:11505–9.
  • Torres VA, Mielgo A, Barbero S, et al. Rab5 mediates caspase-8-promoted cell motility and metastasis. Molecular Biology of the Cell 2010;21:369–76.
  • Safa AR, Day TW, Wu CH. Cellular FLICE-like inhibitory protein (C-FLIP): a novel target for cancer therapy. Current Cancer Drug Targets 2008;8:37–46.
  • Bagnoli M, Balladore E, Luison E, et al. Sensitization of p53-mutated epithelial ovarian cancer to CD95-mediated apoptosis is synergistically induced by cisplatin pretreatment. Molecular Cancer Therapeutics 2007;6:762–72.
  • Geserick P, Drewniok C, Hupe M, et al. Suppression of cFLIP is sufficient to sensitize human melanoma cells to TRAILand CD95L-mediated apoptosis. Oncogene 2008;27:3211–20.
  • Rogers KM, Thomas M, Galligan L, et al. Cellular FLICE-inhibitory protein regulates chemperiodicalapy-induced apoptosis in breast cancer cells. Moleclar Cancer Therapeutics 2007;6: 1544–51.
  • Ozoren N, El-Deiry WS. Cell surface Death Receptor signaling in normal and cancer cells. Seminars on Cancer Biology 2003;13:135–47.
  • Schulze-Bergkamen H, Krammer PH, Apoptosis in cancer–implications for therapy. Seminars on Oncology 2004;31:90–119.
  • Mellier G, Huang S, Shenoy K, Pervaiz S. TRAILing death in cancer. Molecular Aspects of Medicine, 2010;31(1):93–112.
  • Koschny R, Walczak H, Ganten TM. The promise of TRAIL–potential andrisks of a novel anticancer therapy. Journal of Molecular Medicine (Berlin) 2007;85:923–35.
  • Kurokawa M, Zhao C, Reya T, Kornbluth S. Inhibition of apoptosome formation by suppression of Hsp90beta phosphorylation in tyrosine kinaseinduced leukemias. Molecular and Cellular Biology 2008;28:5494–506.

Добавить комментарий

Войти с помощью: 

Ваш e-mail не будет опубликован. Обязательные поля помечены *