References

Molecular oncology. Causes of cancer and targets for treatment. Eds Edward P. Gelmann et al., Cambridge University Press (2014)


  1. Rubin JS, Bottaro DP. UCSD Molecule Pages: HGF. URL: http://www.signaling-gateway.org/molecule/query?afcsid=A004032 (Accessed Oct 20, 2011.)
  2. Peschard P, Park M. From Tpr-Met to Met, tumorigenesis and tubes. Oncogene 2007;26:1276–85.
  3. Corso S, Comoglio PM, Giordano S. Cancer therapy: can the challenge be MET? Trends in Molecular Medicine 2005;11:284–92.
  4. Rosario M, Birchmeier W. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends in Cell Biology 2003;13:328–35.
  5. Zhang YW and Vande Woude GF. HGF/SF-met signaling in the control of branching morphogenesis and invasion. Journal of Cell Biochemistry 2003;88:408–17.
  6. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nature Reviews Molecular and Cellular Biology 2003; 4:915–25.
  7. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney International 2006;69:213–7.
  8. Borowiak M, Garratt AN, Wustefeld T, et al. Met provides essential signals for liver regeneration. Proceedings of the National Academy of Sciences USA 2004;101:10608–13.
  9. Huh CG, Factor VM, Sanchez A, et al. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proceedings of the National Academy of Sciences USA 2004;101:4477–82.
  10. Morishita R, Aoki M, Hashiya N, et al. Therapeutic angiogenesis using hepatocyte growth factor (HGF). Current Gene Therapy 2004;4:199–206.
  11. Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney International 2001; 59:2023–38.
  12. Lokker NA, Mark MR, Luis EA, et al. Structure-function analysis of hepatocyte growth factor: identification of variants that lack mitogenic activity yet retain high affinity receptor binding. EMBO Journal1992;11:2503–10.
  13. Niemann HH, Jager V, Butler PJ, et al. Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB. Cell 2007;130:235–46.
  14. Dharmawardana PG, Giubellino A, Bottaro DP. Hereditary papillary renal carcinoma type I. Current Molecular Medicine 2004;4:855–68.
  15. Liu Y. The human hepatocyte growth factor receptor gene: complete structural organization and promoter characterization. Gene 1998;215(1): 159–69.
  16. Gherardi E, Youles ME, Miguel RN, et al. Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor. Proceedings of the National Academy of Sciences USA 2003;100:12039–44.
  17. Antipenko A, Himanen JP, van Leyen K, et al. Structure of the semaphorin-3A receptor binding module. Neuron 2003;39:589–98.
  18. Love CA, Harlos K, Mavaddat N, et al. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nature Structural Biology 2003;10:843–8.
  19. Basilico C, Arnesano A, Galluzzo M, et al. A high affinity hepatocyte growth factor-binding site in the immunoglobulin-like region of Met. Journal of Biological Chemistry 2008; 283:21267–77.
  20. Ma PC, Maulik G, Christensen J, Salgia R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Reviews 2003;22: 309–25.
  21. Villa-Moruzzi E, Puntoni F, Bardelli A, et al. Protein tyrosine phosphatase PTP-S binds to the juxtamembrane region of the hepatocyte growth factor receptor Met. Biochemical Journal 1998;336:235–9.
  22. Comoglio PM, Boccaccio C. Scatter factors and invasive growth. Seminars in Cancer Biology 2001;11:153–65.
  23. Giordano S, Bardelli A, Zhen Z, et al. A point mutation in the MET oncogene abrogates metastasis without affecting transformation. Proceedings of the National Academy of Sciences USA 1997;94:13868–72.
  24. Gu H, Neel BG. The “Gab” in signal transduction. Trends in Cell Biology 2003;13:122–30.
  25. Van Andel Research Institute, Research Tools: Met. URL: http://www.vai.org/ met/ (Accessed March 25, 2013.)
  26. Lengyel E, Sawada K, Salgia R. Tyrosine kinase mutations in human cancer. Current Molecular Medicine 2007; 7:77–84.
  27. Bardelli A, Longati P, Gramaglia D, et al. Uncoupling signal transducers from oncogenic MET mutants abrogates cell transformation and inhibits invasive growth. Proceedings of the National Academy of Sciences USA 1998;95:14379–83.
  28. Giordano S, Maffe A, Williams TA, et al. Different point mutations in the met oncogene elicit distinct biological properties. FASEB Journal 2000;14: 399–406.
  29. Michieli P, Basilico C, Pennacchietti S, et al. Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene 1999;18:5221–31.
  30. Graveel CR, London CA, Vande Woude GF. A mouse model of activating Met mutations. Cell Cycle 2005;4518–20.
  31. Joffre C, Barrow R, Menard L, et al. A direct role for Met endocytosis in tumorigenesis. Nature Cell Biology 2011;13:827–37.
  32. Kong-Beltran M, Seshagiri S, Zha J, et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Research 2006;66:283–9.
  33. Ma PC, Kijima T, Maulik G, et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Research 2003;63:6272–81.
  34. Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Research 2005; 65:1479–88.
  35. Lee JH, Han SU, Cho H, et al. A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 2000; 19:4947–53.
  36. Tyner JW, Fletcher LB, Wang EQ, et al. MET receptor sequence variants R970C and T992I lack transforming capacity. Cancer Research 2010;70:6233–7.
  37. Corso S, Migliore C, Ghiso E, et al. Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene 2008;27:684–93.
  38. Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003;3:347–61.
  39. Peruzzi B, Athauda G, Bottaro DP. The von Hippel-Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proceedings of the National Academy of Sciences USA 2006;103:14531–6.
  40. Cecchi F, Wright C, Bottaro DP. Experimental cancer therapeutics targeting the hepatocyte growth factor/Met signaling pathway. Center for Cancer Research , National Cancer Institute, Bethesda, MD 20892 USA. URL: http://ccrod.cancer.gov/confluence/display/CCRHGF/Home (Accessed March 25, 2013.)
  41. Jun HT, Sun J, Rex K, et al. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clinical Cancer Research 2007;13:6735–42.
  42. Wen PY, Schiff D, Cloughesy TF, et al. A Phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neurological Oncology 2011;13:437–46.
  43. Eng C, Van Cutsem E, Nowara E, et al. A randomized, Phase Ib/II trial of rilotumumab (AMG 102; ril) or ganitumab (AMG 479; gan) with panitumumab (pmab) versus pmab alone in patients (pts) with wild-type(WT) KRAS metastatic colorectal cancer (mCRC): Primary and biomarker analyses. Journal of Clinical Oncology 29, 2011 (Suppl. Abstract 3500), American Society of Clinical Oncology (ASCO) Annual Meeting; Chicago, IL, 2011.
  44. Jones SF, Cohen RB, Bendell JC, et al. Safety, tolerability, and pharmacokinetics of TAK-701, a humanized anti-hepatocyte growth factor (HGF) monoclonal antibody, in patients with advanced nonhematologic malignancies: First-in-human Phase I dose-escalation study. Journal of Clinical Oncology 28:15s, 2010 (Suppl. Abstract 3081), American Society of Clinical Oncology (ASCO) Annual Meeting; Chicago, IL, 2010.
  45. Tan K, Park K, Lim M, et al. Phase Ib study of ficlatuzumab (formerly
  46. AV-299), an anti-hepatocyte growth factor (HGF) monoclonal antibody (MAb) in combination with gefitinib
  47. (G) in Asian patients (pts) with NSCLC. Journal of Clinical Oncology 29: 2011 (Suppl. Abstract 7571), American Society of Clinical Oncology (ASCO) Annual Meeting; Chicago, IL, 2011. 46. Martens T, Schmidt NO, Eckerich C, et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clinical Cancer Research 2006;12:6144–52.
  48. US Food and Drug Administration. Cabozantinib. URL: http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm330213.htm (Accessed March 25, 2013.)
  49. Traynor K. Cabozantinib approved for advanced medullary thyroid cancer. American Journal of Health-System Pharmacy 2013;70:88.
  50. Gordon MS, Vogelzang NJ, Schoffski P, et al. Activity of cabozantinib (XL184) in soft tissue and bone: results of a Phase II randomized discontinuation trial (RDT) in patients (pts) with advanced solid tumors. Journal of Clinical Oncology 2011;29:(Suppl.; Abstract 3010).
  51. Wen P, et al. Phase II study of XL184 (BMS 907351), an inhibitor of MET, VEGFR2, and RET, in patients (pts) with progressive glioblastoma (GB). Journal of Clinical Oncology 2010;28 (Suppl. Abstract 2006). American Society of Clinical Oncology (ASCO) Annual Meeting; Chicago, IL, 2010.
  52. Vaishampayan U. Cabozantinib as a novel therapy for renal cell carcinoma. Current Oncology Reports. 2013;15:76–82.
  53. Christensen JG, Zou HY, Arango ME, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Molecular Cancer Therapeutics 2007;6:3314–3322.
  54. Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. New England Journal of Medicine 2010; 363:1693–1703.
  55. Munshi N, Jeay S, Li Y, et al. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Molecular Cancer Therapeutics 2010;9:1544–53.
  56. http://www.daiichisankyo.com/news/detail/003880.html (Accessed March 25, 2013.)
  57. Wagner AJ, Goldberg JM, Dubois SG, et al. Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. Cancer 2012;118:5894–902.
  58. http://www.daiichisankyo.com/news/detail/004480.html (Accessed March 25, 2013.)
  59. Santoro A, Rimassa L, Borbath I, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncology 2013;14:55–63.
  60. Choueiri TK, Vaishampayan U, Rosenberg JE, et al. Phase II and biomarker study of the dual MET/ VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. Journal of Clinical Oncology 2013;31:181–6.
  61. Liu L, Shi H, Liu Y, et al. Synergistic effects of foretinib with HER-targeted agents in MET and HER1or HER2coactivated tumor cells. Molecular Cancer Therapeutics 2011;10:518–30.
  62. Nakagawa T, Tohyama O, Yamaguchi A, et al. E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Science 2010;101:210–5.
  63. Qi W, Cooke LS, Stejskal A, et al. MP470, a novel receptor tyrosine kinase inhibitor, in combination with Erlotinib inhibits the HER family/PI3K/Akt pathway and tumor growth in prostate cancer. BMC Cancer 2009;9:142.
  64. Welsh P, Mahadevan D, Bearss D, Stea B. Sensitization of a glioblastoma multiforme (GBM) cell line by MP470: a novel c-Met antagonist. International Journal of Radiation Oncology 2007; 69:S100.
  65. Hong D, LoRusso P, Kurzrock R, et al. Phase I study of MGCD265 administered intermittently to patients with advanced malignancies (Study 265–102). Journal of Clinical Oncology (Meeting Abstracts) 2009; 27:e14516. American Society of Clinical Oncology (ASCO), Annual Meeting; Chicago, IL, 2009.
  66. Kollmannsberger CK, Hurwitz H, Vlahovic G, et al. Phase I study of daily administration of MGCD265 to patients with advanced malignancies (Study 265–101). Journal of Clinical Oncology (Meeting Abstracts) 2009; 27:e14525. American Society of Clinical Oncology (ASCO), Annual Meeting; Chicago, IL, 2009.
  67. Donehower RC, Sacrdina M, Hill M, et al. A Phase I dose-escalation study of INCB028060, an inhibitor of c-MET receptor tyrosine kinase, in patients with advanced solid tumors. Journal of Clinical Oncology 29 (Suppl. Abstract 3091) American Society of Clinical Oncology (ASCO), Annual Meeting; Chicago, IL, 2011.
  68. Yang WJ, Credille K, Gao H, et al. LY2801653, an orally available small molecule inhibitor of c-Met, demonstrated broad antitumor efficacy in patients derived xenograft models. Cancer Research 2010;70: Suppl. 1, American Association for Cancer Research (AACR) Annual Meeting; Washington, DC, 2010.
  69. Diamond S, Boer J, Maduskuie TP, Jr., et al. Species-specific metabolism of SGX523 by aldehyde oxidase and the toxicological implications. Drug Metabolism and Disposition 2010; 38:1277–85.
  70. Timofeevski SL, McTigue MA., Ryan K., et al. Enzymatic characterization of c-Met receptor tyrosine kinase oncogenic mutants and kinetic studies with aminopyridine and triazolopyrazine inhibitors. Biochemistry 2009;48:5339–49.
  71. Qi J, McTigue MA, Rogers A, et al. Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors. Cancer Research. 2011;71:1081–91.
  72. Peach ML, Tan N, Choyke S, et al. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. Journal of Medicinal Chemistry 2009;52:943–951.
  73. Ross RW, Stein M, Sarantopoulos J, et al. A Phase II study of the c-Met RTK inhibitor XL880 in patients (pts) with papillary renal-cell carcinoma (PRC). Journal of Clinical Oncology, ASCO Annual Meeting Proceedings Part I. Vol 25, No. 18S (June 20 Supplement): 15601, American Society of Clinical Oncology (ASCO), Annual Meeting; Chicago, IL, 2007.
  74. Srinivasan R, Choueiri TK, Vaishampayan U, et al. A Phase II study of the dual MET/VEGFR2 inhibitor XL880 in patients (pts) with papillary renal carcinoma (PRC). Journal of Clinical Oncology 26 (Suppl. Abstract 5103), American Society of Clinical Oncology (ASCO), Annual Meeting; Chicago, IL, 2008.
  75. Cecchi F, Liu Y, Gagnon RC, et al. ShedMET (sMet), VEGFA, and sVEGFR2 are markers of foretinib treatment in metastatic gastric cancer patients. Molecular Cancer Therapeutics 2009;8 Suppl. 1, AACR-NCI-EORTC International Conference Molecular Target and Cancer Therapeutics; Boston, MA, 2009.
  76. Kollmannsberger CK, Hurwitz H, Vlahovic G, et al. Phase I study of daily administration of MGCD265 to patients with advanced malignancies (study 265–101). Journal of Clinical Oncology 27 (Suppl. Abstract e14525), American Society of Clinical Oncology (ASCO) Annual Meeting; Chicago, IL, 2009.
  77. DePrimo S, Wu B, Huang S, et al. Correlative tumor molecular profiling and plasma biomarker analysis in a Phase II study of XL184 in patients with progressive or recurrent glioblastoma multiforme (GBM). Journal of Clinical Oncology 27:15s, 2 (Suppl. Abstract 2049), American Society of Clinical Oncology (ASCO), Annual Meeting; Chicago, IL, 2009.
  78. Muller T. DePrimo S. McGrath G, Yu P, et al. Pharmacodynamic and correlative biomarker analyses in clinical trials of XL184 and oral, potent inhibitor of MET VEGFR2, and RET. AACR-NCIEORTC International Conference Molecular Target and Cancer Therapeutics; Boston, MA, 2009.
  79. Pena C, Shan M, Bukowski RM, et al. Plasma biomarkers predicting outcome in patients with advanced RCC: results from the sorafenib Phase II TARGET trial. AACR-NCI-EORTC International Conference Molecular Target and Cancer Therapeutics; Boston, MA, 2009.
  80. Heymach JV, Fritsche HA, Gornet TG, et al. Lower baseline levels of plasm hepatocyte growth factor, IL-6, IL-8 are correlated with greater tumor shrinkage in renal cell carcinoma patients treated with pazopanib. Molecular Cancer Therapeutics 2009;8, Suppl. 1, AACRNCI-EORTC International Conference Molecular Target and Cancer Therapeutics; Boston, MA, 2009.
  81. Tanimoto S, Fukumori T, El-Moula G, et al. Prognostic significance of serum hepatocyte growth factor in clear cell renal cell carcinoma: comparison with serum vascular endothelial growth factor. Journal of Medical Investigation 2008;55:106–11.
  82. Yano S, Wang W., Li Q, et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Research 2008;68: 9479–87.
  83. Engelman JA, Zejnullahu K., Misudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007;316:1039–43.
0

Добавить комментарий

Войти с помощью: 

Ваш e-mail не будет опубликован. Обязательные поля помечены *